

Towards Net Zero: Decarbonising flexible generation

2025 IERE-TPC Net-Zero Workshop | May 2025

<u>Ingo Birnkraut</u>, RWE Generation SE, Head of Strategic Development Roman van Laak, RWE Generation NL B.V., Strategic Development Manager Dr. James Bain, RWE Generation UK, Assistant Project Developer Dr. Max Voss, RWE Generation SE, Team Lead Decarbonization Intelligence

Please note:

This document contains statements that are oriented towards the future. They reflect the current opinions, expectations and assumptions of management and are based on the information available to management at this time. Statements that are oriented towards the future do not guarantee the occurrence of future results and developments and are connected to known and unknown risks and uncertainties. Various factors may therefore cause actual future events and developments to deviate considerably from the expectations and assumptions voiced herein.

In particular, these factors include changes in general economic and competitor situations. Other factors may also impact the Group's future results and development, including, but not limited to: developments on the financial markets; fluctuations in exchange rates; and national and international legislative amendments, particularly with regard to tax-related regulations. Neither the Group nor any associated companies assume the obligation to update the statements made in this notification.

1. Growing Green

- 2. Decarbonising RWE Generation
- **3. Project focus: BECCUS**

Growing Green Our energy for a sustainable life

- RWE provides energy security; we ensure a secure supply of electricity;
- Through renewable solutions as wind, solar, hydro and green hydrogen when we can; and
- Through our conventional power stations when we must. Our flexible generation fleet is a core piece of our strategy, Growing Green;
- Growing Green outlines a 2040 netzero target matched by an ambitious investment and growth programme.

Business model fully aligned with our strategic focus on the energy transition.

RWE					
	RWE Offshore Wind GmbH	RWE Renewables Europe Australia GmbH & RWE Clean Energy LLC	RWE Generation SE	RWE Supply & Trading SmbH	RWE Power AG
	Offshore Wind	Onshore Wind & Solar	Flexible Generation 4 Operational Division	Supply & Trading	Phaseout Technologies
	Offshore wind activities in Europe, North America and APAC	Onshore wind, solar in Europe, North America and APAC	Storage, and Hydrogen	Trading/origination, Gas & LNG, Commodity solutions, Gas storage	Lignite operations (planned exit by 2030)
			 25 GW in development 4 Markets (D, NL, UK, TR) 		(exit 04/2023, now dismantling)
	d Adj. EBIDTA 1.6 bn€	Adj. EBIDTA 1.5 bn€	~3,500 Employees	Adj. EBIDTA 0.7 bn€	Not included in Adj. EBITDA
	Annual Report 2024, RWE AG	pei Net-Zero Workshop 2025	€ Adj. EBIDTA 1.9 bn€		Page 5

1. Growing Green

2. Decarbonising RWE Generation

3. Project focus: BECCUS

How to decarbonise? Defining the best pathway

Flexible Generation

GW

Infrastructure Technology The asset **Market** & demand Feedstock • Turbine type • Water & waterway Market demand • Volume & capacity • Turbine development access • Regulatory Location & space Access to pipelines pathway requirements Integration into • Age Grid connection • Subsidy schemes site and support

* Source: RWE Factbook 2024

Net Zero 2040

To deliver on our Net Zero 2040 target, we prepare to decarbonise our conventional fleet

- **1.** Growing Green
- 2. Decarbonising RWE Generation
- **3. Project focus: BECCUS**

We need to start NOW and team up with Industry to make a real impact on CO2 reduction and to create a sustainable future

Page 10

The Eemshavencentrale

Key employer in the area

Modern plant (COD 2015)

RWE is a safe

operator

A

1,560 MW output

Now: hard coal and biomass

 \mathcal{O}'

Future: 100% biomass

Decarbonising the Eemshavencentrale Bio-energy, carbon capture, utilisation and storage (BECCUS)

- RWE explores the possibility to apply BECCUS at the Eemshavencentrale
- Technical and economic feasibility is studied
- The Eemshavencentrale is expected to capture between 8 and 10 million ton of $\rm CO_2$ yearly
- Sustainable biomass is CO₂ neutral, which means our BECCUS projects reduce the amount of carbon in the atmosphere → Negative Emissions

-NOT ENCRYPTED-

Carbon Dioxide Removal (CDR) is different from avoidance of CO₂ emissions by ETS

<u>avoidance = ETS credit</u>

- Original emissions are **replaced** by emission free technology
- avoidance exempts a company from buying ETS credits in an ETS market

Carbon Dioxide Removal (CDR)

- Original emissions remain, but are **offset** by CDRs
- CDRs are needed for hardto-abate emissions and provide a cost-effective solution
- For companies outside ETS

-NOT ENCRYPTED-

CDRs are traded on two types of markets

Voluntary market for CDRs

 <u>Who</u>: Companies that fall **outside an Emission Trading System** (EU ETS, South Korea, etc). Mainly US companies.

- <u>Why:</u> Companies are driven by **individual targets** on hard-toabate emissions. Mostly, these individual green targets result in **license-to-operate, ESG-rating or value in sales**.
- Currently, majority of sales are non-permanent solutions
- CDR price is not linked to ETS price, as buyer operate outside of ETS

Compliance market

- Some ETS markets integrated CDRs, but EU ETS not yet
- <u>Why</u>: Integration of CDRs in EU ETS is driven by gov't to:

- EU works on integration of CDRs in the EU ETS. Market design is unknown, but some suggestions are:
 - Mandate a **volume percentage** for compliance through CDR credits, creating a stable demand
 - Create a separate market for CDRs
- <u>Who</u>: Target industries depend on market design

-NOT ENCRYPTED-

Global CDR market development Demand for negative emissions requires capacity expansion

¹ no valid data available, in addition concerns regarding negative environmental side-effects; ² European commission proposal **Sources:** BNEF, IHS, AFRY

¹ calculated based on liquid DACCS and 4,000 MtCO2 demand, ² Anderson and Peters 2016, 380–700 million hectares; 2050 breakdown shown for high scenario. **Sources:** McKinsey 2021, IPCC 2021, IEA 2022, Walton 2020, Friedmann 2020

The future site (Artist impression)

III

1000

0

HHH!

6

0

3

tel.

13.2

(3)

17.21

Lessons learned at Niederaußem power station

Lignite -fired power plant Operational, producing 2.2 GW

Home to the Niederaußem Research & Innovation Center

115,000+

Operating hours of the CCS facility

Participated in multiple EU & national funded R&D projects

(i.e. MefCO₂, Act Align CCUS, Take-Off) Studies focus on capture rate, solvent degredation and emission reduction 7,2

Ton of CO₂ captured per day

Decarbonising the Pembroke plant Exploring H₂ conversion

Dual pathway

- Located in the South Wales Industrial Cluster
- Potential for both hydrogen conversion and application of CCS
- Currently, technical and economic viability of applying both is assessed

Hydrogen conversion

- Pathway depends on security of required H₂ volumes
- Studies into feasibility of conversion to high volume blends of H₂/Natural Gas, and pure H₂ combustion illustrate CO₂ savings achievable

Natural gas & CCS

- Focus on technical feasibility and site integration
- Exploring options with regards to transport of captured CO₂

Pembroke Power Station

RWE is a safe operator

Modern plant (COD 2012)

2,181 MW output

Now: 100% natural gas Future: gas & CCS or H₂ conversion

Research priorities

SCOUTING

M

CO₂

 (H_2)

- (Alternative) Decarbonisation and Carbon Capture Technology Scouting
- Clean fuel Scouting
- Flex Power Generation and Demand Technology Scouting

CARBON CAPTURE

- Waste streams & emissions
- Solvent degradation processes
- Capture Process Modelling and Optimisation
- CO2 utilisation

HYDROGEN COMBUSTION

- H2 blending up to 100%
- Balance of plant
- Low NOx emission technologies

Thank you. Questions?

We play a key role in our core markets

Our renewables & flexible generation are needed to meet demand

Germany	The Netherlands	The United Kingdom
 Ambition to reduce national CO₂ footprint by 65% in 2030 (compared to 1990), Net Zero by 2045; German electricity demand is expected to grow by circa 30% by 2050; The Kraftwerksstrategie prioritises (green) hydrogen conversion over CCS; Opening for CCS as (temporary) solution if hydrogen supply can't meet demand. 	 Ambition to reduce national CO₂ footprint by 55% in 2030 (compared to 1990), Net Zero by 2050; Electricity demand expected to skyrocket; the national grid operator's most conservative scenario forecasts demand to triple by 2050; Governmental focus on renewables, hydrogen and nuclear, but supports CCS infrastructure development 	 Ambition for the power sector to be Net Zero by 2030; The national grid operator projects electricity demand to increase by circa 50% by 2036, and be doubled by 2050; The government acknowledges firm and flexible power plants will be needed beyond 2030; CCS is seen as part of the solution.