

2017 IERE-TNB Putrajaya Workshop

Early Detection and Localization of Thermal Faults from Acoustic Emission Measurement for TNB In-Service Power Transformers

Dr. Yasmin Hanum Md Thayoob Distribution Division, Tenaga Nasional Bhd.

> Abu Sufian Abu Bakar TNBR QATS Sdn. Bhd.

Ir. Dr. Mohd Aizam Talib TNB Research Sdn. Bhd.

CONTENT OF PRESENTATION

1-INTRODUCTION

Introduction, Background of The Problem, Problem Statement, Research Objectives, Scope of Research

2-LITERATURE REVIEW

Dissolved Gas Analysis (DGA), Methods for DGA Interpretation, DGA Limitations, Acoustic Emission (AE) Signal and System, AE System for PD Detection, Research Gap

3-RESEARCH METHODOLOGY

Flowchart of Methodology, Perform Oil Sample, Perform AE Measurement, Selection of Transformers, Perform DGA Interpretation, Analysis of AE Data, Characterization of AE Descriptors for Thermal Fault Using Statistical Analysis

4-RESULTS AND ANALYSIS

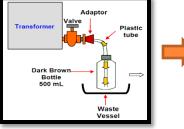
List of Selected Transformers, Results from DGA Analysis, AE Data for PD and Thermal Fault, Selection of AE Descriptors, Range of Values of AE Descriptors for Thermal Fault, Validation of Thermal Fault AE Descriptors Range

5-CONCLUSION AND RECOMMENDATIONS

Research Findings, Accomplishment of Research Objectives, Summary of Conclusion

6-FUTURE RESEARCH WORK

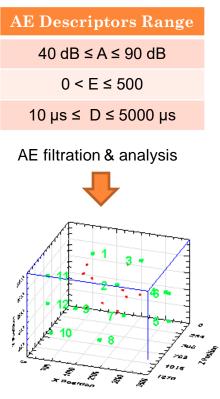
REFERENCES


- Faults in transformers can cause extensive damage and interruption of electricity supply resulting in large revenue losses.
- Diagnostic tests for in-service power transformer is important for early fault prediction and increase reliability of electricity supply.
- One of the diagnostic test is Acoustic Emission (AE) measurement.
 It is used to locate the acoustic emission activity inside the transformer.

BACKGROUND OF THE PROBLEM

- In TNBD, DGA test has been used to detect the presence of gases due to faults in a transformer.
- If DGA shows the presence of some fault related gases, the next step is usually to perform acoustic emission measurement.
- Currently, in TNB, the acoustic emission measurement is used to locate Partial Discharge activities based on AE descriptors range for PD.
- If PD location was detected, repair work will take place.
- However, if PD location was not detected, usually no further action was taken.

CURRENT PRACTICE (WITH PD DETECTED)



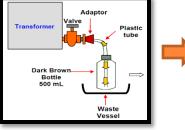
DGA testing

AE Measurement

AE activities and location

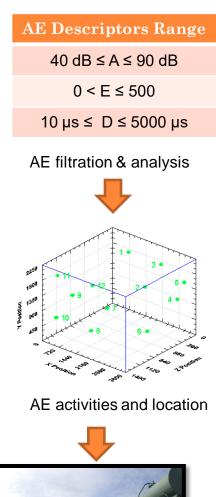
Locate fault based on AE location

Untank transformer


Find the fault location

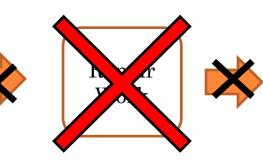
Transformer back into service

CURRENT PRACTICE (PD NOT DETECTED)



DGA testing

AE Measurement



Locate fault based on AE location

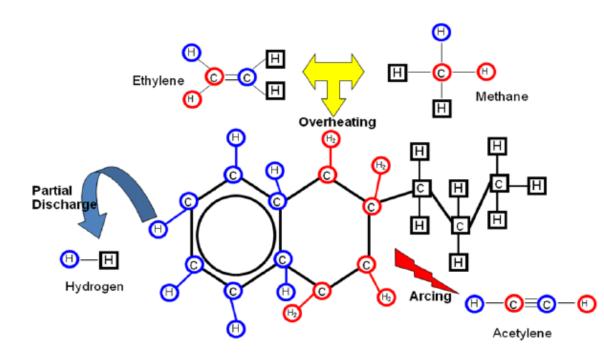
Untank transformer

No action taken on the transformer

PROBLEM STATEMENT

- All acoustic emission activities during AE measurement will be recorded and filtered according to PD AE Descriptors range.
- In some cases, after AE measurement was performed, no PD activity could be recorded and located even though DGA test result has shown the occurrence of some fault related gases in the transformer oil.
- However, AE data not in the range of PD that was filtered during the analyzing process might indicate the occurrence of other faults.
- Hence, need to explore the range of AE Descriptors for other type of faults such as thermal fault.

RESEARCH OBJECTIVES


- To correlate between DGA test results and Acoustic Emission data
- To select the AE Descriptors for characterization of thermal faults
- To obtain the range of values of AE Descriptors for detection and localization of thermal faults

SCOPE OF RESEARCH

- Research were limited to :
 - 33/11 kV Transformer.
 - Partial discharge and thermal fault.
 - MTM 30 MVA transformer.
- Diagnostic testing methods were limited to DGA and Acoustic Emission measurement.
- Only IEC Ratio method was used to interpret the DGA results.

o Dissolved Gas Analysis (DGA) [1,2]

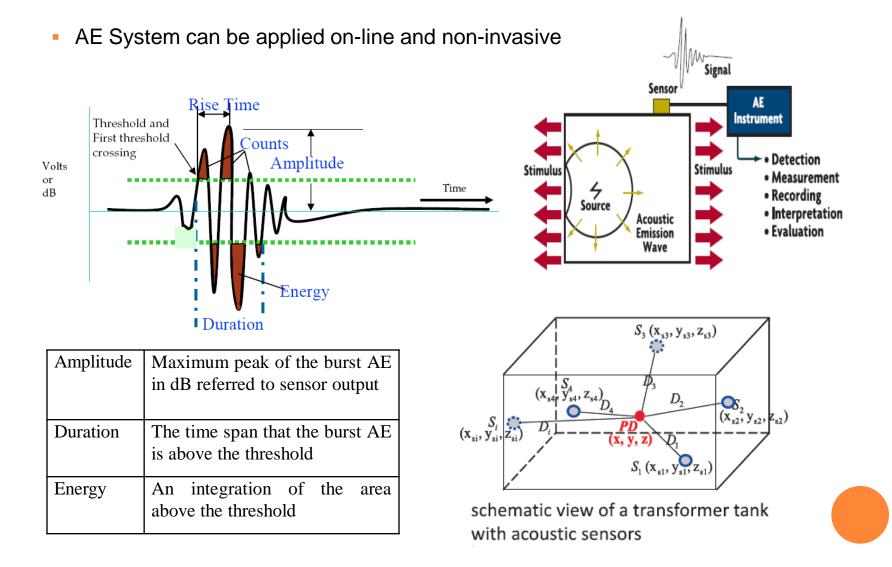
- One of the most established technique and widely practiced by many utilities for transformer testing and diagnostics
- Thermal and electrical fault caused deterioration and decomposition of solid/liquid insulation – release gases that dissolved in the oil.
- Gases can be quantified by Dissolved Gases Analysis (DGA) technique to indicate the types of fault.

• Methods for DGA Interpretation [3,4]

- IEC Ratio
- Doernenburg Ratio
- Duval Triangle
- Rogers ratio
- Key gas Method

This research is only limited to IEC Ratio Method

IEC Ratio:


L	Ι	K	Diagnosis
0	0	0	Normal deterioration
0	1	0	Partial Discharge of low energy density
1	1	0	Partial discharge of high energy density
1-2	0	1-2	Discharge of low energy
1	0	2	Discharge of high energy
0	0	1	Thermal fault <150°C
0	2	0	Thermal fault 150°C - 300 °C
0	2	1	Thermal fault 300°C - 700 °C
0	2	2	Thermal fault 700 °C

Gas Ratios	Ratio Codes
CH ₄ /H ₂	Ι
$C_{2}H_{4}/C_{2}H_{6}$	К
C_2H_2/C_2H_4	L

• DGA Limitations [5]

- Studies have shown that DGA cannot provide any information about the location or position of fault inside the transformer.
- DGA also does not provide any information about the severity of insulation damage.

Acoustic Emission (AE) Signal and System [6,7]

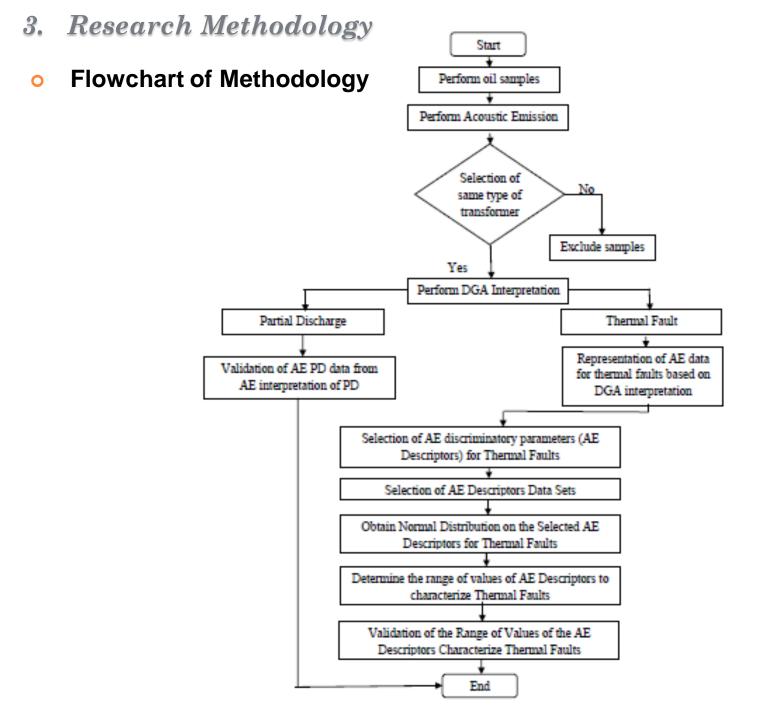
AE System for PD Detection

- The technique has been used to detect and locate PD but it is not yet established for other types of fault.
- The main advantage of using AE detection method is that it can locate the discharge occurrence.
- Three Parameters or Descriptors extracted from the AE signals emitted due to the occurrence of discharge have been used to analyze PD – Amplitude, Energy and Duration.

Range of Acoustic Emission Descriptors for PD [6]

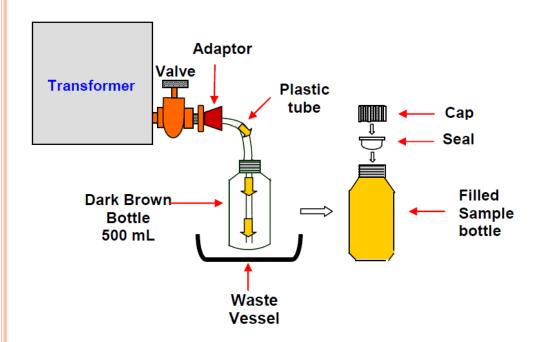
AE Descriptors	Range
Amplitude	40 dB ≤ Amplitude ≤ 90 dB
Energy	0 < Energy ≤ 500
Duration	10 μ s \leq Duration \leq 5000 μ s

Research Gap


• Acoustic Emission for Heat Detection [8]

- Arturo Nunez and Samual J. Ternowchek in their studies have mentioned that, although PD can be detected by using AE measurement, not much work have been done for localized heating.
- Based on their studies, AE signal was detectable when the localized temperature reaches about 120°C and it increases with temperature.
- This shows that data obtained from the acoustic emission has its own characteristics that can be further studied.

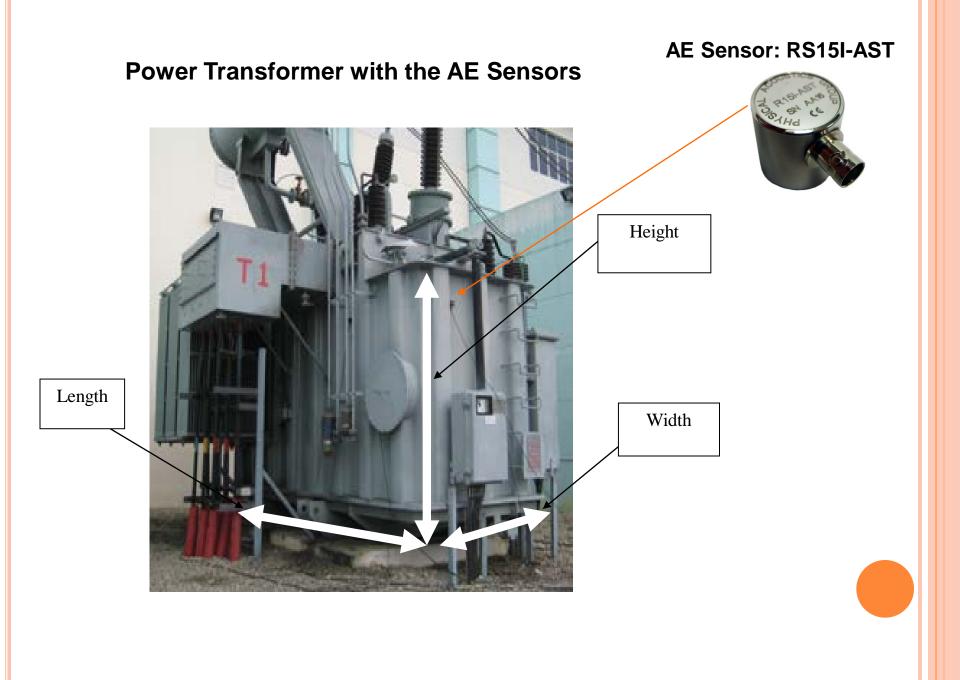
• Acoustic Emission Characterization [9]


 Studies made by G. Santos Filho, L.Zaghetto and O.Pereira shows that the characteristic of acoustic emission such as repetition rate, duration, energy can give an indication of the cause of emission.

> Need to explore the characteristics of AE for thermal fault

3. Research Methodology

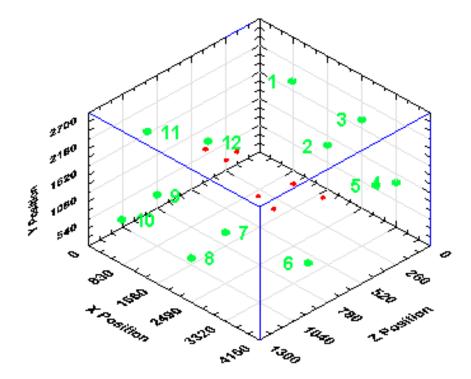
• Perform Oil Sample [2]

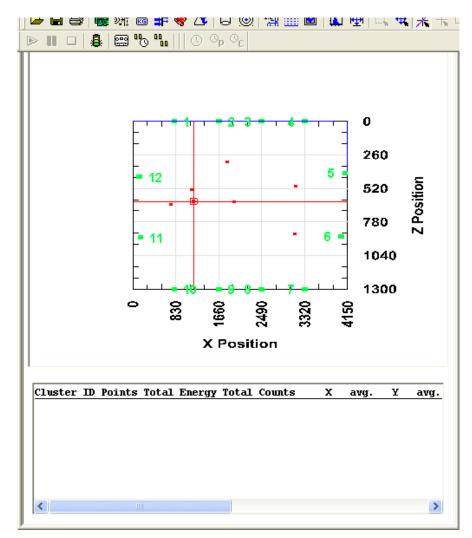

• Perform Acoustic Emission (AE) Measurement [6]

- Measure the dimension of TX (width, length, height)
- Locate the sensors on TX body.
- Record the sensors location/coordinate.

- Key in TX dimension in the AE system.
- Key in the sensors location/coordinate
- Perform sensors performance check

- Run the system for 24 hours.
- Record the AE activity.


SENSORS LOCATION


Sensor	X(mm)	Y(mm)	Z(mm)
1	830	1800	0
2	1660	900	0
3	2490	1800	0
4	3320	900	0
5	4000	1800	430
6	4000	900	860
7	3320	1800	1140
8	2490	900	1140
9	1660	1800	1140
10	830	900	1140
11	0	1800	860
12	0	900	430

X = Length, Y = Height, Z = Width

3D VIEW WITH AE ACTIVITIES

• From AE system visualization software

x = 1172 mm, y = 1282 mm, z = 620 mm

Energy	43.875	
Duration	2563.625 µs	
Amplitude	50.5 dB	

• Selection of Transformers

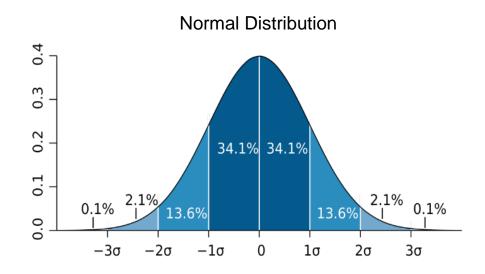
- Transformers from various manufacturers were installed in the system.
- Different transformers have their own dimensions according to the manufacturer.
- Different in dimensions will lead to different sensors location/coordinate.
- Therefore, only transformers from MTM were used in this research.

a) MTM

b) Xian

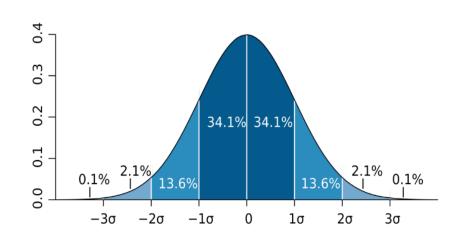
c) Pauwels

• Perform DGA Interpretation


- IEC Ratio Method was used to interpret DGA Results
- DGA results were categorized into two categories :
 - Partial Discharge
 - Thermal Fault

o Analysis of AE Data

- Analyze AE data from two categories:
 - Partial Discharge (Sample A)
 - > Thermal Fault (Sample B)
- Select the AE Descriptors:
 - > Amplitude
 - Duration
 - Energy
- Study and compare the pattern of the AE Descriptors for each sample with the AE PD range:


AE Descriptors	Range for PD
Amplitude	$40 \text{ dB} \le \text{Amplitude} \le 90 \text{ dB}$
Energy	0 < Energy ≤ 500
Duration	10 μ s ≤ Duration ≤ 5000 μ s

Characterization of AE Descriptors for Thermal faults Using Statistical Analysis

• Obtain Normal Distribution on the Selected AE Descriptors

- Perform Normal Distribution on each sample of the AE data set due to thermal fault
- Data outside the $\pm 1\sigma$ (standard deviation) of the mean will be considered as outliers and removed
- Only the remaining data will be used for the next process

• Determine the range of values of the AE Descriptors for Thermal Fault

- The remaining data (after removing the outliers) from each sample was combined into one table
- The range of values for thermal fault is determined from the upper and lower limits of the normal distribution based on ±1σ (standard deviation)

• Validation of the Thermal Fault AE Descriptors range

- Determine the upper and lower limits of the AE Descriptors for each sample separately based on t - distribution
- Compare with Thermal fault AE range upper and lower limits obtained earlier

• List of Selected Transformers

No	Location	Manufacturer
1	PPU Damansara Intan T2	MTM
2	PPU Seligie T1	Xian
3	PPU Bandar Sunway T1	Lioyang
4	PPU Bandar Sultan Sulaiman T1	Lioyang
5	PPU Bandar Sultan Sulaiman T2	Lioyang
6	PPU Strong Crest T2	Xian
7	PPU Seafield T2	Puwels
8	PPU Bukit Kemuning T1	MTM
9	PPU Bayu Perdana T2	Takaoka
10	PPU Lion Town T1	Puwels
11	PPU Olak Lempit T1	Electro
12	PPU Morib T1	Xian
13	PPU Lumut T2	MTM
14	PPU Bemban T2	MTM
15	PPU Bukit Merah T1	MTM
16	PPU Bukit Mewah T2	Electro
17	PPU Kubu Gajah T1	Puwels
18	PPU Lekir T1	MTM
19	PPU Lekir T2	MTM
20	PPU Meru Raya T1	MTM
21	PPU Simpang Pulai T1	Electro
22	PPU TLDM T1	Takaoka
23	PPU TLDM T2	Takaoka
24	PPU Semanggar T1	Electro

Sample	PPU	
	A1	Damansara Intan T2
А	A2	Bemban T2
(PD)	A3	Bukit Merah T1
	A4	Lekir T2
	B1	Bukit Kemuning T1
В	B2	Lumut T2
(Thermal Fault)	B3	Meru Raya T1
	B4	Lekir T1

Only MTM transformers were selected

• Due to same size of transformers (Dimension)

DGA Analysis for Sample A

GAS	CONTENT	
H2	110	-
02	11752	
C2H6	11	
CO	494	
CO2	6157	
C2H4	71	
CH4	18	
C2H2	47	

PPU Damansara Intan 12 (A1)					
Ratio Code					
C_2H_2/C_2H_4	0.66	L	1		
CH_4/H_2	0.16	Ι	0		
C_2H_4/C_2H_6	6.45	K	2		

Comment: Discharge with high energy

GAS	CONTENT
H2	216
02	6120
C2H6	6
CO	320
CO2	1961
C2H4	9
CH4	23
C2H2	0

PPU Bemban T2 (A2)

R	Coc	le	
C_2H_2/C_2H_4	0.00	L	1
CH_4/H_2	0.11	Ι	0
C_2H_4/C_2H_6	1.50	K	2

Comment:

Discharge with high energy

GAS	CONTENT
H2	225
02	12522
C2H6	4
CO	246
CO2	2100
C2H4	11
CH4	30
C2H2	0

PPU Bukit Merah T1 (A3)

Ratio		Coc	le
C_2H_2/C_2H_4	0.00	L	1
CH_4/H_2	0.12	Ι	0
C_2H_4/C_2H_6	2.75	K	1

Comment: Discharge with low energy

GAS	CONTENT
H2	151
02	6979
C2H6	11
CO	559
CO2	3588
C2H4	10
CH4	7
C2H2	10

PPU Lekir T2 (A4)

Ratio		Coc	le
C_2H_2/C_2H_4	0.66	L	1
CH ₄ /H ₂	0.16	Ι	1
C_2H_4/C_2H_6	6.45	K	0

Comment: Discharge with high density

DGA Analysis for Sample B 0

GAS	CONTENT	PF
H2	34	
02	3828	C_2
C2H6	90	
CO	263	C_2
CO2	2803	
C2H4	52	Co
CH4	91	Th
C2H2	2	

Ratio Code			
C_2H_2/C_2H_4 0.04		L	0
CH ₄ /H ₂	2.68	Ι	2
C_2H_4/C_2H_6	0.58	K	0
Comment:			

GAS	CONTENT	PPU Lum	ut T2 (B2)
H2	80		
02	1555	F	Ratio
C2H6	188	C_2H_2/C_2H_4	0.01
СО	615	CH ₄ /H ₂	0.99
CO2	4033	C_2H_4/C_2H_6	1.02
C2H4	192		
CH4	79	Comment	
C2H2	1	Thermal F	ault <150°

R	Coc	le		
C_2H_2/C_2H_4	0.01	L	0	
CH ₄ /H ₂	0.99	Ι	0	
C_2H_4/C_2H_6	1.02	K	1	

Comment:

Thermal Fault <150°C

GAS	CONTENT
H2	225
02	12522
C2H6	72
CO	246
CO2	2100
C2H4	81
CH4	30
C2H2	1

PPU	Meru	Raya	T1	(B3)	

Ratio		Coc	le
C_2H_2/C_2H_4	0.01	L	0
CH_4/H_2	0.12	Ι	0
C_2H_4/C_2H_6	1.13	K	1

Comment: Thermal Fault <150°C

GAS	CONTENT
H2	145
02	6665
C2H6	25
CO	626
CO2	4978
C2H4	61
CH4	70
C2H2	1

PPU Lekir T1 (B4)

F	Coc	le	
C_2H_2/C_2H_4	0.02	L	0
CH ₄ /H ₂	0.48	Ι	0
$C_{2}H_{4}/C_{2}H_{6}$	2.44	K	1

Comment: Thermal Fault <150°C

• Summary of Results from DGA Analysis

Sample	PPU	ТХ	H2	C2H6	C2H4	CH4	C2H2	Fault
A1	Damansara Intan	T2	110	11	71	18	47	
A2	Bemban	T2	216	6	9	23	0	
A3	Bukit Merah	T1	225	4	11	30	0	PD
A4	Lekir	T2	151	11	10	7	10	
B1	Bukit Kemuning	T1	34	90	52	91	2	
B2	Lumut	T2	80	188	192	79	1	Thermal
B3	Meru Raya	T1	225	71	81	30	1	Fault
B4	Lekir	T1	145	25	61	70	1	

• Acoustic Emission Data for Sample A (PD)

S	Sample A1							
Е	D	А						
12	1727	47						
14	2124	48						
17	890	55						
18	2177	48						
19	1129	60						
20	1896	49						
29	1223	62						
32	3581	48						
35	2145	55						
39	2516	54						
46	4179	51						
52	5108	52						
55	3619	54						
56	3686	63						
61	4513	52						
63	5329	52						
67	4264	55						
70	2626	57						
71	5373	53						
77	4485	56						
82	4389	59						
83	2807	68						
83	4879	56						
88	2954	65						
88	5916	56						
97	4387	59						
101	3428	63						
123	5663	60						
124	4830	60						
126	5537	60						
138	6330	63						
153	5282	63						
261	6236	67						
275	601	72						
414	7821	71						

Sample A2							
E	D	А					
1	59	46					
1	92	46					
1	161	46					
2	207	48					
4	460	47					
8	521	58					
6	530	49					
7	539	51					
6	714	47					
11	925	52					
15	979	53					
20	1104	55					
23	1471	54					
27	1554	65					
43	1705	69					
25	1823	64					
32	2341	61					
81	2944	69					
117	3609	76					

Sample A3							
Е	D	А					
3	400	47					
3	550	47					
7	842	47					
8	797	51					
10	978	52					
10	1313	47					
11	1268	47					
14	1576	47					
19	1905	49					
28	2069	53					
30	2002	57					
38	2551	58					
40	2534	54					
41	3000	52					
46	2735	55					
49	2592	58					
51	2791	57					
67	2310	64					
68	3150	59					
76	3560	61					
98	4151	60					
113	3920	63					
148	3811	57					
263	3290	62					

	Sample A4								
Е	D.	А							
103	1071	57							
216	1076	71							
329	1290	77							
425	1396	77							
342	1951	78							
80	2036	55							
125	2184	83							
170	2188	61							
197	2637	87							
478	2643	79							
211	2813	87							
430	2899	79							
270	3380	72							
215	3400	66							
195	3429	82							
24	3717	90							
45	3757	51							
230	3799	88							
321	3823	69							
351	3854	66							
444	3942	72							
228	4489	70							
77	4555	54							

E : Energy D : Duration A : Amplitude

Fall within PD Acoustic Emission Range $0 < E \le 500$, $10\mu s \le D \le 5000\mu s$, $40dB \le A \le 90dB$

E: Energy D: Duration A: Amplitude

• Acoustic Emission Data for Sample B (Thermal Fault)

Sample B4

Sample B1								
E	E D							
1111	11059	46						
3211	13338	49						
674	6404	48						
1005	8470	49						
714	10584	48						
614	10614	49						
819	10867	49						
1132	12006	57						
819	12202	49						
823	12797	49						
591	12903	56						
952	13410	60						
1113	13830	63						
1211	13859	59						
1059	13869	58						
1050	13909	55						
1114	13969	64						
1199	14279	60						
1098	14371	63						
1184	5284	66						
2206	5566	68						
648	10837	67						
867	11309	69						
862	13372	64						

Sample B2									
E	D	А							
1076	3271	64							
1088	3369	60							
1168	8580	59							
1183	9214	57							
609	9495	64							
1429	10639	67							
761	10690	60							
934	10734	66							
1375	10797	66							
741	11116	74							
1605	11411	71							
847	11452	62							
783	11585	71							
1263	11970	73							
1663	16530	79							
2381	23425	83							
Fall beyond PD AE Range for Descriptors E & D PD AE Range: 0 < E ≤ 500, 10µs ≤ D ≤ 5000µs									
·/	\mathbf{h}								

Е	Sample D	A
510	9366	71
622	10521	71
661	10321	72
720	10664	73
732	11548	72
753	11115	72
762	12064	72
782	11035	76
925	11094	78
1080	11155	77
1229	11432	78
1399	12437	78
1448	13606	81
1470	11309	83
1522	12435	82
1752	12037	82
1806	13633	82
1813	12651	84
1869	15509	80
2655	13148	90
3257	13754	92
3361	13289	88
3387	15004	93
3601	15132	90

Е	D	А							
156	12194	A 77							
367	8958	68							
368	9940	68							
420	9842	72							
422	10193	72							
432	11208	67							
599	10709	76							
602	10196	71							
626	6484	78							
639	10391	73							
648	10255	73							
649	10105	74							
656	11111	71							
662	6965	78							
662	11665	90							
670	11895	69							
689	10164	72							
715	11196	73							
751	12025	81							
751	12515	73							
770	11595	81							
843	11641	92							
892	6615	79							
922	11393	88							
961	7270	81							
986	7016	81							
990	9796	67							
1030	11562	79							
1046	11326	77							
1061	8984	77							
1136	12396	78							
1168	11487	86							
1224	9511	73							
1251	9418	65							
1251	12775	77							

E: Energy D: Duration A: Amplitude

1251

12775

• Acoustic Emission Data for Sample B (Thermal Fault) (Cont'd)

S	ample B1	1	S	ample B2	>	-	Sample	B3	Sar	nple B4	•	-
E	D	Α	E	D	A	Е	D	A	Е	D	А	
1111	11059	46	1076	3271	64	510	9366	71	156 367	12194 8958	77 68	4
3211	13338	49	1088	3369	60	622	10521	71	368	9940	68	
674	6404	48	1168	8580	59	661	10343	72	420	9842	72	
1005	8470	49	1183	9214	57	720	10664	72	422	10193	72	
						-			432	11208	67	4
714	10584	48	609	9495	64	732	11548	72	599 602	10709 10196	76 71	4
614	10614	49	1429	10639	67	753	11115	72	626	6484	71	
819	10867	49	761	10690	60	762	12064	72	639	10391	73	
1132	12006	57	934	10734	66	782	11035	76	648	10255	73	
819	12202	49	1375	10797	66	925	11094	78	649	10105	74	
823	12797	49	741	11116	74	1080	11155	77	656	11111	71	4
591	12903	56	1605	11411	71	1229	11133	78	662 662	6965 11665	78 90	4
						┫ ┝────┥			670	11895	<u> </u>	
952	13410	60	847	11452	62	1399	12437	78	689	10164	72	
1113	13830	63	783	11585	71	1448	13606	81	715	11196	73	
1211	13859	59	1263	11970	73	1470	11309	83	751	12025	81	
1059	13869	58	1663	16530	79	1522	12435	82	751	12515	73	4
1050	13909	55	2381	23425	83	1752	12037	82	770 843	11595 11641	81 92	4
1114	13969	64				1806	13633	82	843 892	6615	79	
1199	14279	60				1813	12651	84	922	11393	88	
									961	7270	81	
1098	14371	63				1869	15509	80	986	7016	81	
1184	5284	66	V	/		2655	13148	90	990	9796	67	
2206	5566	68		in PD AE I	•	3257	13754	92	1030 1046	11562 11326	79 77	-
648	10837	67		Descriptor AE Range		3361	13289	88	1040	8984	77	
867	11309	69		AE Range 3< A ≤ 90d		3387	15004	93	1136	12396	78	
862	13372	64	0 UL			3601	15132	90	1168	11487	86	
	15572					5001	10104		1224	9511	73	
				T .					1251	9418	65	

• Selection of AE Descriptors

• Since the AE Amplitude for thermal fault fall within the AE range for PD, it was decided to remove Amplitude as AE Descriptor in this study.

AE Descriptors	Ranges
Amplitude	40 dB ≤ Amplitude ≤ 90 dB
Energy	?? < Energy ≤ ??
Duration	$?? \leq \text{Duration} \leq ??$

Observation: Values for Amplitude for both thermal fault and PD are within the same range

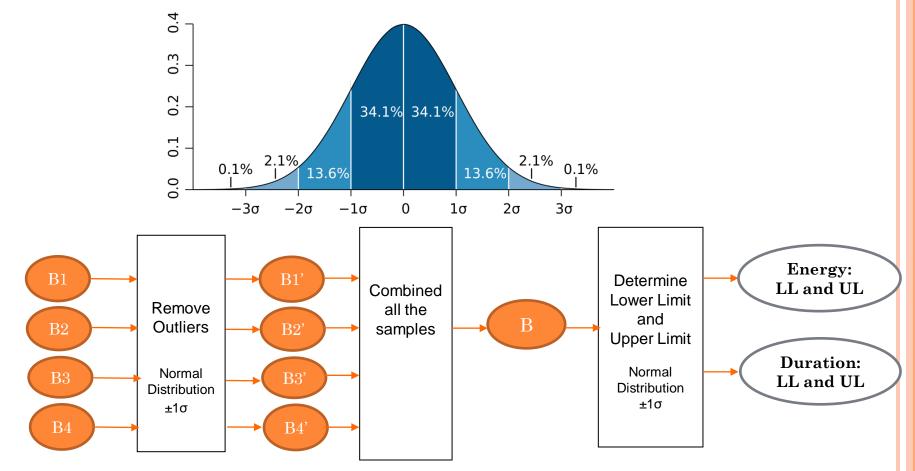
• Location of AE Activity for Sample B (Thermal Fault)

AE Activity	AE Location				
	x(mm)	y(mm)	z(mm)		
1	2560	1200	651.8		
2	2618	992.7	649.5		

PPU Bukit Kemuning T1 (B1)

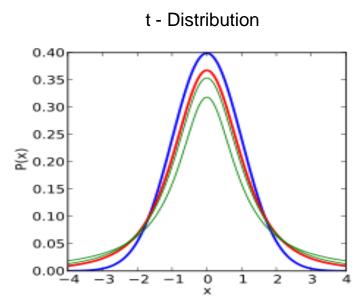
PPU Lumut T2 (B2)

AE Activity	AE Location				
	x(mm)	y(mm)	z(mm)		
1	105.7	49.03	21.75		
2	113	48.11	22.4		


PPU Meru Raya T1 (B3)

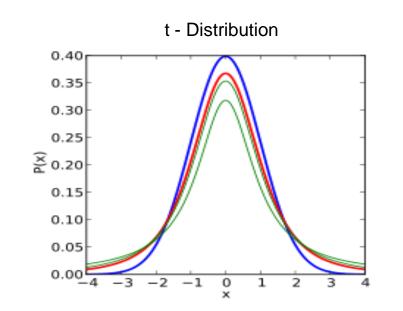
AE Activity	AE Location			
	x(mm)	y(mm)	z(mm)	
1	100.7	54.33	23.92	
2	101	55.17	27.39	

PPU Lekir T1 (B4)


AE Activity	AE Location				
	x(mm)	y(mm)	z(mm)		
1	100.9	56.35	23.23		
2	101.4	57.13	24.71		

• Range of Values of AE Descriptors for Thermal Fault

		AE Descript	ors Range		
Sample	Sample Energy		Energy Duration		
	Lower Limit	Upper Limit	Lower Limit	Upper Limit	
В	629	1338	10225µs 12891µs		


• Validation of Thermal Fault AE Descriptors Range (Energy)

	Energy					AE Descrij	otors Limit
		Standard	Lower	Upper	0	Lower	Upper
Sample	Mean, µ	Deviation, σ	Limit	Limit	Compare	Limit	Limit
B1"	530	1642	883	994	with		
B2"	733	1629	998	1193		COO	1990
B3"	611	2564	1048	1321	Descriptors	629	1338
B4"	329	2143	814	961	range		

• The range for upper and lower limits of each samples (with thermal fault) are within the AE Descriptors range for Energy

Validation of Thermal Fault AE Descriptors Range (Duration)

		D.					
Sample	Mean, µ	Standard	Lower Limit	Upper Limit	Compare	AE Descrip Lower Limit	Upper Limit
B1'	12579	1327	12188	12869	with AE		
B2' B3'	$\begin{array}{c} 10640\\ 12133 \end{array}$	$\frac{1034}{1024}$	$\begin{array}{r} 10257 \\ 11823 \end{array}$	$\begin{array}{r} 11022 \\ 12442 \end{array}$	Descriptors	10225	12891
B4'	11038	1099	10803	11272	range		

• The range for upper and lower limits of each samples (with thermal fault) are within the AE Descriptors range for Duration

5. Conclusion and Recommendations

Research Findings

The range of values of AE Descriptors for thermal fault has been determined.

		AE Descripto	ors Range	
Sample	nple Energy		Energy Duration	
	Lower Range	Upper Range	Lower Range	Upper Range
В	629	1338	10225µs	12891µs

oAE Descriptors for Amplitude is within the same range (40 dB \leq A \leq 90 dB) for both Partial Discharge and Thermal Fault.

• TNB diagnostic and maintenance team can benefit from this finding by improving the maintenance operation and planning for early thermal fault detection and localization using the range of values of the AE Descriptors obtained in this research.

5. Conclusion and Recommendations

ACCOMPLISHMENT OF RESEARCH OBJECTIVES

• To correlate between DGA test results and Acoustic Emission data

 This study has revealed that DGA results can be correlated to the Acoustic Emission data based on the range of values of the AE Descriptors for PD and thermal fault.

• To select the AE descriptors for characterization of thermal faults

- Range of values for Amplitude (AE Descriptor) for Partial Discharge and Thermal Fault, were within the same range (40 dB \leq A \leq 90 dB).
- Therefore, only Duration and Energy were selected as AE Descriptors to characterize thermal fault.

To obtain the range of values of AE Descriptors for detection and localization of thermal faults

- This research has shown that, AE data beyond the PD AE Descriptors range cannot be ignored as they could indicate other fault, i.e thermal fault.
- The range of values for AE Descriptors to characterize thermal fault for a specific type of transformer was also obtained in this research.

5. Conclusion and Recommendations

SUMMARY OF CONCLUSION

• All the three main objectives were met successfully.

- The method presented in this study is recommended to be carried out for an early detection and localization of thermal fault for TNB in-service power transformers using the AE Detection System already available.
- Similarly, with this approach, necessary actions or strategy can be taken to increase the transformer reliability, lifetime and save the operational cost.
- Finally, this can also lead to a better performance of the distribution network.

6. Further Work

FURTHER RESEARCH WORK

- The AE data obtained from thermal faults are to be recorded and saved with suitable data repository technique for reference in condition based monitoring of the transformer; and to further establish the trending pattern of the AE data and its location.
- More samples from AE data are to be obtained from transformer with thermal fault in order to strengthen the findings especially on the range of values for the AE Descriptors.
- Explore the possible effects on the values and characteristics of AE Descriptors for other types of fault in a transformer that cause acoustic emission such as arcing, corona and etc.
- Investigate the range of values of the AE Descriptors for thermal fault from transformers with different dimensions and sizes and also other manufacturers.
- Application of Digital Signal Processing technique such as the time-frequency analysis to obtain more parameters for a better characterization of thermal fault from the AE signals [10]. This include the possibility of determining the severity level of the thermal fault.

REFERENCES

- [1] IEC 60599, "Guide to the Interpretation of Dissolved and Free Gas Analysis" 1999-03.
- [2] TNB Condition Based Maintenance Manual for Main Distribution Substation (PPU), January 2013.
- [3] G. K. Irungu, A. O. Akumu, and J. L. Munda, "Fault Diagnostic in Oil Filled Electrical Equipment: Review of Duval triangle and Possibility of Alternatives", Electrical Insulation Conference (EIC), Montreal, QC, Canada, 2016, pp. 174 177.
- [4] Ali Saeed Alghamdi, Nor Asiah Muhamad, Abubakar A.Suleiman, "DGA Interpretation of Oil Filled Transformer Condition Diagnosis", Transaction on Electrical and Electronic Materials. Vol.13 No.5, pp. 229-232, Oct 2012.
- [5] Tangella Bhavani Shanker, Hebbale Narasimhaiah Nagamani, Gururaj Sudhindra Punekar "Acoustic Emission Partial Discharge Detection Technique Applied to Fault Diagnosis: Case Studies of Generator Transformers", Serbian Journal of Electrical Engineering, Vol.13, No. 2, June 2016, pp. 89-202.
- [6] Atlas of Acoustic Emission Partial Discharge Detection, Version 1.3, 2006.
- [7] Y.H Md Thayoob, Z. Zakaria, M.R Samsudin, P.S Ghosh, M.L. Chai, "Preprocessing of Acoustic Emission Signals From Partial Discharge in Oil-pressboard Insulation System", 2010 IEEE International Power and Energy Conference (PECon2010), November 2010, Kuala Lumpur, Malaysia.
- [8] Arturo Nunez, Samual J. Ternowcheck, "Locating and Assessing Faults in Power Transformers", T&D World Magazine, Jun 2004.
- [9] Oswaldo G. Santos Filho, Sergio L. Zaghetto, Giogio O.Pereira, "Case Studies of Electric Power Equipment Diagnostic Using Acoustic Emission", 17th World Conference on Nondestructive Testing, October 2008.
- [10] Z. Zakaria, Y.H Md Thayoob, M.R. Samsudin, P.S. Ghosh, M.L. Chai, "Feature Analysis of Acoustic Emission Signals in Time-Frequency Representation from Partial Discharge Sources using Self-Organizing Map", International Conference on Signal and Image Processing Applications 2009, November 2009, Kuala Lumpur, Malaysia.

End of Presentation

THANK YOU