How to Promote Energy Conservation Behaviors based on Smart Meter Data Analytics

Case Studies on Energy Advice Reports for Residential and Commercial Customers

Central Research Institute of Electric Power Industry

Hidenori Komatsu, Osamu Kimura, Toshihiro Mukai, Ken-ichiro Nishio, and Yasushi Shinohara

IERE-TNB @ Putrajaya, Malaysia
November 22nd, 2017

R 電力中央研究所

Today's Topics

◆ Information provision utilizing 'Nudging' concept

"A nudge, as we will use the term, is any aspect of the choice architecture that alters people's behavior in a predictable way without forbidding any options or significantly changing their economic incentives." from "Nudge: Improving Decisions about Health, Wealth, and Happiness" p.6

◆ 'Nudging' consumer's energy conservation behaviors

➤ Information provision by automatic energy advice generating tools

- ◆ Targets of interventions
 - ➤ ①Residential sector
 - ②Commercial sector

1 For residential sector

- ◆ Evaluating the peak saving impact of behavioral interventions.
- ◆ Enabled by using "smart meter" data.
 - > Information-based: (1) IHD, (2) weekly reports, (3) email alert
 - > Price-based: (4) 30-minute rate uniformly designed with IHD
- ◆ RCT experiment for 16 months
 - > August 2013 to November 2014
- ◆ Around 500 HHs in a condominium participated in the trial
 - From Aug 2013 ... 230 HHs (the 1st phase)
 - From Nov 2013 ... 230 + 270 HHs (the 2nd phase) (the cond in Funabashi)

Randomized experiment

(Note: Control group (group D) is under equivalent situation to the customers of standard TEPCO services.)

Price-based Intervention

Conventional Tiered Rate

(TEPCO's "Meter Rate Lighting B")

30-Minute Tiered Rate

(Family-net Japan's "Smart Plan")

The rate increases as a function of 30-min consumption.

Information-based interventions

usage > 1.5kW

Weekly Report

Real-time usage information (Assistive of the 30-min. tiered rate)

A variety of information including social comparison of peak time usage

An example of 'Story'

Promote energy conservation in system demand peak time by social comparison.

Personalized story selection

A story automatically chosen by monitoring the 30-min interval data was provided to each household every week

- A story estimated to be effective is chosen for each household
- Messages/advices consider the reporting season
- Stories recently provided are not chosen so as not to get customers bored

II 電力中央研究所

Hourly Usage

The treatment groups showed usage reduction compared to the control group

2 For Commercial sector

- Adoption of smart-meters is accelerating
 - Growing amount of interval data available for energy efficiency services
- Expanding energy audits to SMEs is necessary
 - > Public audit programs can reach only a fraction of SMEs
 - > Traditional audits are cost- and time-intensive
- **◆**Targets
 - ➤ Utilities, Energy service providers, Multi-site companies with interval electricity meters

Input and output of our tool

30-minites interval data

	ID1	ID2	ID3	ID4	
2015/4/1 0:00	368	184	258	161	
2015/4/1 0:30	368	161	258	138	
2015/4/1 1:00	368	161	258	184	
2015/4/1 1:30	368	184	129	184	
2015/4/1 2:00	368	138	258	161	
2015/4/1 2:30	345	161	258	161	
2015/4/1 3:00	322	161	129	184	
2015/4/1 3:30	345	161	258	138	
2015/4/1 4:00	345	138	258	161	
2015/4/1 4:30	345	161	129	161	
2015/4/1 5:00	322	138	258	161	
2015/4/1 5:30	322	184	129	138	

Basic demographic data (* optional)

١.									
		Building type	Address						
	ID1								
	ID2								
	ID3								
	ID4								
	ID5								

Our report generator

Temperature (public data)

Customized energy saving advice reports

2 pages, A4 size paper, by mail, twice a year

Design and selection of advices

Approaches for designing advices

- 1. Fault detection
- 2. Simplified disaggregation
- 3. Social comparison (benchmarking)
- 4. Selective visualization

Select the most important 4 advices for each building

1. Fault detection

Example: detecting unnecessary demand increases focusing on time of day.

The maximum demand was increased by 6 % in the highest 5 hours.

Hourly demand in days with highest demands in a year

Time

- To avoid demand peaks, be careful for operation of air-conditioning, when e.g. starting-up, or extremely hot.
- Check if any equipment can be stopped in a peak time.

1. Fault detection (cont.)

The maximum demand was increased by 13 % in the highest 5 hours.

Hourly demand in days with highest demands in a year

- To avoid demand peaks, be careful for operation of air-conditioning, when e.g. starting-up, or extremely hot.
- Check if any equipment can be stopped in a peak time.

2. Social comparison (benchmarking)

Example: benchmarking of yearly kWh per m².

Your building consumed more than similar ones

- Your building consumed more than similar ones last year, and ranked 23rd out of 25.
- If you reduce consumption to the average level, it will save 40% of your total consumption.

3. Disaggregation by end use

Example: Disaggregation highlighting the lighting demand.

Lighting accounted for 59% of total consumption last year.

- This can be saved by reducing lamps and replacing with LED lighting.
- Measure the lighting levels and you will find areas with excessive lighting.

3. Disaggregation by end use

Example: Disaggregation highlighting the base load.

Saving base load by 5% reduces 60 thousand yen of electricity bill per year

- Consumption is large not only on operating days but also at midnight or on non-operating days, and the share is high compared to other buildings.
- Saving base load by 5% reduces 60 thousand yen of electricity bill per year.
- Turn off power completely after work and check if you have equipment that can be stopped at night or on non-operating days.

4. Selective visualization

Example: comparison of monthly consumption with last year's.

Consumption increased in the last four months sequentially

- Consumption of this year was 5% larger than last year's.
- Identify the causes that increased the consumption.

5. Summary

Summary

- Introducing demand monitors or improving operation of airconditioning to reduce the maximum demand in the 3 highest demand days could result in saving 210 thousand yen per year.
- Improving operation time of air-conditioning or updating old equipment to reduce 20% of air-conditioning demand days could result in saving 140 thousand yen per year.
- Replacing with LED or reducing lamps to reduce the lighting demand could result in saving 220thousand yen per year.
 - Summary is always appeared in the end of reports
 - If the savings of electricity bills are small, the terms are omitted.

Selection of advice

An example of output

省エネアドバイスレポート

Company profile and other relevant information

- Highlights that the peak demand tends to emerge in August.

- Suggests actions to prepare for the summer.

最高気温(℃)

- Highlights the correlation between maximum demand and outside temperature.

- Emphasizes the importance of demand control when it is hot.

- Shows that the highest demand is always just after opening time

- Recommends improving HVAC start up.

Indicates the share of HVAC to the peak time usage at 8 am.

「マンド監視装置の導入や空調運転の改善等により、最大需要電力の年間上位7日間の マンドを抑制することで、約10万円の電気料金削減となります

調運転時間の見直しや老朽設備の更新により、冷暖房需要を2割減らすことで、 間約7万円の電気料金削減となります

D照明への更新や照明の間引き等により照明需要を2割減らすことで、

間約18万円の電気料金削減となります

減効果は、使用電力量あたり12.8円/kWh、契約料金を最大需要電力あたり1 なものが含まわます。

Summary of applicable actions and the potential savings

Responses from energy managers

- "Useful to understand the patterns of electricity usage, since we do not have demand monitors."
- "Can be utilized as important materials for planning EE measures."

- "Too busy to take a look."
- "We've already done those recommendations."

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Hidenori Komatsu, PhD

E-mail:

komatsu@criepi.denken.or.jp