

KXX

Development of Metrology for Digital Measurement Technology in SGCC

China Electric Power Research Institute Metrology Department XU Zili November 2017, Putrajaya, Malaysia

Development of DES in SGCC

Traceability, Calibration R&D Plan

R&D Highlights

Further Research

2

Advantage of Electronic Instrument Transformer More Safety & Reliability

Optical Voltage Transformer

advantages:

1) Make the Grid More Safety - No Ferromagnetic **Resonance**, Simple wiring.

2) Energy Saving and Environmental Friendly - Lighter, Less Energy Consumption.

 $\overline{U_2}$

Advantage of Electronic Instrument Transformer More Accuracy

Advantage of Electronic Instrument Transformer More Data & Information

Traditional Energy System – Used Nowadays

Digital Energy System – Next Generation

Digital Energy Equipment Used in China

Survey info:

Time: Jan 2016; Object: 27 Province; Rated Voltage: 10kV & 35kV Equipment: EIT, MU & DEM

Voltage level	Electronic transformer	Merging Unit	Digital Energy Meter
10kV	2503	1725	1682
35kV	479	836	716
Total	2982	2561	2398

1. Widely Used in SGCC; 2. 10kV More than 35kV;

Operation Time of Digital Energy Equipment

Started: 2007; Experiment Stage: 2010~2013; Widely Used: After 2013

Traceability, Calibration R&D Plan

R&D Highlights

Further Research

A 110kV Test System Setup in Hei Longjiang

Test System Average Temp Per Year Hegang . Typical: -20° C ~ 30° C 黑龙江 Extremely: -35° C \sim 40 $^{\circ}$ C Mu Danjian 新疆 Hei Longjiang 辽宁 内蒙古 **110kV Dongshan Substation** 河北 山西 **10KV Mudanjiang Substation** 訪想 山东 青海 宁夏 **Local System** 陕西 河南 江苏 西藏 **Ratio/Phase** 四川 Video 湖道 Error Wuhan Environmental 贵州 **Energy Error** Data 云南 广西 **Wuhan** 海南 **Remote System Remote Monitor System** (Wuhan)

EITs Test System Setup in 110kV Substitution —— Pilot Project Start in 2014.5

ATE GRII

EITs Test System Setup in 10kV Substitution —— Pilot Project Start in 2016.7

- Digital Switchgear No.1: Sensors(analog Output) + IED + Digital Energy Meter
- Digital Switchgear No.2: Sensors(Digital Output) + Merge Unit + Digital Energy Meter

Online Calibration Principle

Instrument Transformer for Reference
Climate Sensor for Temperature Measurement
Online Monitor System for EITs Characteristics Analyzed

Data Mining Algorithms: Decision Tree, BP, SVM, K-Means.

Error Characteristics: Independence Characteristics(Temp, Hum, EM, Vib). **Environments Database:** Build Climate Database.

Evaluate System: Functional relation for Error & Fault Prediction.

Directly Improvements: Architecture, Electrical & EM improvement. **Indirectly Improvements:** Error Correction By Software or Hardware.

Data Processing Methods

Environment Attributions Dimension Reduction

ECT/5 kinds attribution

Analyzing the operation data through the decision tree analysis method, and the influence weight of the single error source can be sorted by the error source, The algorithm is:

Information Entropy: $Info(D) = -\frac{x_1}{N}\log_2(\frac{x_1}{N}) - \frac{x_2}{N}\log_2(\frac{x_2}{N}) - \dots - \frac{x_k}{N}\log_2(\frac{x_k}{N}) = -\sum_{j=1}^{k} p_j \cdot \log_2(p_j)$ Information under Attribute $A_i Info(A_i)$: $Info(A_i) = -\frac{x_{i1}}{x_{i.}}\log_2(\frac{x_{i1}}{x_{i.}}) - \frac{x_{i2}}{x_{i.}}\log_2(\frac{x_{i2}}{x_{i.}}) - \dots - \frac{x_{ik}}{x_{i.}}\log_2(\frac{x_{ik}}{x_{i.}})$ Information under Attribute A Info(A): $Info_A(D) = \frac{x_{i.}}{N} Info(A_1) + \frac{x_{2.}}{N} Info(A_2) + \dots + \frac{x_{l.}}{N} Info(A_l) = \sum_{i=1}^{l} \frac{x_{i.}}{N} Info(A_i)$

Attribution					EVT/4 kinds attribution		
group	Load Current	Temp	Humidity	Vibration	Magnetic field		Dimension Reduction
ECT Ratio error	0.415	0.018	0.343	0.109	0	ECT Load Current +	EVT
ECT Phase Displacement	0.177	0.415	0.415	0.017	0	Temperature +	Temperature + Humidity
EVT Phase Displacement	1	0.730	0.364	0	0	Humidity 3 Main Attributions	2 Main Attribution

Information Gain : $Gain(A) = Info(D) - Info_A(D)$

Optimize Improve the Accuracy of EITs

Regression line: $\widehat{\varphi}_i = \widehat{\beta}_0 + \widehat{\beta}_1 T_i$ Residual error e_i : $e_i = \varphi_i - \widehat{\varphi}_i$

Minimize the Sum of Squared Error :

$$SSE = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (\varphi_i - \widehat{\varphi}_i)^2$$

Regression coefficients $\hat{\beta}_0$, $\hat{\beta}_1$:

$$\widehat{\boldsymbol{\beta}}_{1} = \frac{\sum_{i=1}^{n} T_{i} \boldsymbol{\varphi}_{i} - n \overline{T} \overline{\boldsymbol{\varphi}}}{\sum_{i=1}^{n} T_{i}^{2} - n \overline{T}^{2}}$$

 $\widehat{\boldsymbol{\beta}}_0 = \overline{\boldsymbol{\varphi}} - \widehat{\boldsymbol{\beta}}_1 \overline{T}$

Based on the error corrected, the single EVT operation data regression line can be optimized, and the phase displacement is reduced.

Development of DES in SGCC

Traceability, Calibration R&D Plan

Further Research

20

110kV ECTs Error Characteristics Compare Results

Stability & Reliability Compare for ECTs : LPCT > Rogowski Coil > OCT

110kV EVTs Error Characteristics Compare Results

1. Ratio Error Compare

22

10kV ECTs Error Characteristics Compare Results

(2016/8/6~2017/7/6, totally 12days operation data)

EVT(Digital output): Ratio Error 0.06%, 0.09% and 0.03%(Phase A/B/C)

Phase Displacement 2.8', 2.9' and 3.7'(Phase A/B/C)

The accuracy of digital output ECT is higher than the analog output ECT

10kV EVTs Error Characteristics Compare Results

EVT(Analog output): Ratio Error 0.05%, 0.05% and 0.07%(Phase A/B/C) Phase Displacement 5.0', 5.0' and 5.0'(Phase A/B/C) EVT(Digital output): Ratio Error 0.05%, 0.03% and 0.03%(Phase A/B/C) Phase Displacement 2.5', 10.0' and 2.5'(Phase A/B/C)

EVT accuracy meet the requirements of 0.2 Class.

10kV ECTs 3-D Error Characteristics Compare Results Temperature-Humidity-Error

When the load is low, for analog output and digital output two kinds ECT, their measurement error surface is not smooth with big error fluctuations. With the load increasing, the error surface gradually become smooth, and the operation of the transformer become more stable;

the extreme points of ECT error often appear in the extreme point of the environment, that is, high temperature and high humidity, low temperature and low humidity, high temperature and low humidity and low temperature and high humidity.

10kV EVTs 3-D Error Characteristics Compare Results Temperature-Humidity-Error

For the analog output EVT, in the high temperature, the effect of humidity on the error will be higher; especially when the temperature rise to above 30 °C. The high humidity produces an effect of about -0.15% on the ratio error, and about 8' on the phase displacement.

For the digital output EVT, high temperature and high humidity environment will produce an effect of about -0.1% on the ratio error of phase A,C ,and about -4' on phase displacement.

26

10kV ECTs 3-D Error Characteristics Compare Results

Temperature-Load Current-Error

In the lower load part, for the analog output and digital output two kinds ECT, the error fluctuate higher with the temperature changes. However, when the load is bigger than 20A, the error changes more stable.

Digital Energy System Error Characteristics Active Energy Error

Maximum Active Energy Error Per Month:

-0.48% (Digital Output), -6.0% (Analog Output), -0.99% (Analog Output phase-A), -1.17% (analog output phase C).

Stability (Maximum Month Error – Minimum Month Error):

0.24% (Digital Output), 0.28% (Analog Output Phase-A), 0.41% (Analog Output Phase-C).

Development of DES in SGCC

Traceability, Calibration R&D Plan

R&D Highlights

Further Research

- 1. Test Current: $I_b = I_{1b} + I_{2b}$, Total Current(I_b), Load Current(I_{1b}) and Virtual Current(I_{2b}).
- 2. Reference Mode & Calibration Mode Selected by Control High Voltage Switch.
- 3. Double Reference Enhance Reference Value Accuracy and Reliability.

Test System in SGCC Tibet Lab!!! Established in 2017.9

> On Going !!! Mohe Lab in 2017.11 Tulufan Lab in 2018.4 Meizhou Lab in 2018.6

EITs Intelligence Maintenance Technique

Based on the machine learning, the digital energy metering equipment is able to analyze typical fault reasons and feature, and evaluate the operation running situation.

EITs Intelligence Maintenance Technique

Develop an intelligent detection terminal of the digital metering equipment, to

achieve rapid fault location by the use of fault feature recognition.

Question & Answer

Email: xuzili@epri.sgcc.com.cn