

Kansai's ad mascot "Hapita"

1. Overview of Smart Energy House Project

Smart Energy House Project

- More and more need for energy conservation, demand cut and energy security is argued especially after The Great East Japan Earthquake in 2011.
- Kansai conducted Smart Energy House Project to fulfill the need above, integrating its various technologies.

power with heart

Location: Seika City, Kyoto pref.

Diagram of Smart Energy House

Equipment of Smart Energy House

Moist&heat emitter (human body simulator)

Fuel cell (SOFC 700W)

Lithium ion stationary battery (2kW 5.53kWh)

Interior of the house

EV connected to EV-PCS

Electric water heater "Eco-Cute" (370liter)

Overall Schedule

	2013	2014	2015
1.Basic Measurements	Basic measureme	nts of SOFC, Battery etc.	Basic measurements of EV
2.Combination of PV, SOFC and Batt	Optimizing combi and Battery	nation of PV, SOFC	
3.Self- Sustaining for Emergency	Protot	type V2H-PCS	Commercial V2H-PCS
4.V2H			Combination of V2H and Eco-Cute
5.VPP			VPP through Open ADR&ECHONET Lite

2.Demonstration of V2H

Features of Smart V2H-PCS

- can supply power to household, integrating PV, EV and system power supply seamlessly without momentary outage
- connector based on CHAdeMO with rating of 6kW can charge EV in half a time compared with 200V regular connector

can supply power even in case of utility outage with discharging EV and PV surplus without momentary outage

Operation modes of Smart V2H-PCS

	mode	
	conomic mode1	chrging EV at cheap price at night, discharging to household during the day, maximizing SELL of PV power
		supplying to household with PV and selling PV surplus to
	conomic mode2 sell Pv surplus)	the utility during the day charging EV at cheap price at night and discharging to household
(0	reen mode charge EV with PV surplus)	supplying to household with PV and charging PV surplus to EV during the day discharging to household at night
Cl 関西	harging mode	charging EV with system power
wer with		

Preconditions of experiments

1.Time of use of EV

Ev runs between 10:15-12:00 for 15km

2. Energy consumption of EV

Energy consumption of EV is as follows based on the measured value on the site [summer: 5.6km/kWh, mid: 8.3km/kWh, winter: 4.5km/kWh]

3.SOC

Usable SOC is 27-87% based on the measured value on the site

4. Average generated energy of PV

4kW PV turnout

summer: 12.6kWh/day mid:10.6kWh/day winter:9.0kWh/day

Economic mode1(maximize SELL)

Sell power generated with PV to the utility,
Operating Eco-Cute at night and supplying household appliances
with EV during the day

Green mode (charge EV with PV surplus)

Chage EV with PV surplus, supplying Eco-Cute as well as household appliances with PV during the day

Annual Energy Reduction with V2H

	Real value			Converted value to annual average PV turnout		
	Economic mode1	Economic mode2	Green mode	Economic mode1	Economic mode2	Green mode
summer	207.0	169.7	54.4	207.0	169.7	100.5
Jannier	(base)	▲ 18.0 %	▲ 73.7 %	(基準)	▲ 18.0 %	▲ 51.4 %
fall	162.8	137.6	36.0	162.8	143.5	59.5
fall	(base)	▲ 15.5 %	▲ 77.9 %	(基準)	▲ 11.9 %	▲ 63.4 %
Winter	302.3	300.4	131.9	302.3	274.3	210.8
· VVIIICEI	(base)	▲ 0.6 %	▲ 56.4 %	(基準)	▲ 9.3 %	▲ 30.3 %
average	224.0	202.6	74.1	224.0	195.8	123.6
		Annual reduction 66.9%			Annual reduc	ction 44.8%

Operating Eco-Cute during the day, charging EV with PV surplus and discharging EV at night, it reduces energy consumption by 44.8%

3. Comparion from the view point of customers

profit **Energy** conservation

What is the best for customers?

Calculation precondition for utility cost

1. Utility Price

Power tariff ¥/kWh

		Before April 2013	After May 2013	After October 2015
Day Time10-17h	夏期(7~9月)	31. 05	35. 84	38. 89
Day IIIIe10-17II	その他季節	28. 35	32. 58	35. 54
Living Time 7-10 17-23h		21. 97	24. 59	27. 32
night Time 23-7h		8. 52	10. 76	13. 1

2.FIT price

FIT tariff ¥/kWh

	2012	2013	2014	2015	2016
PV only	42	38	37	33	31
PV with other power sources	34	31	30	27	25
Purchase period	10years				

Comparison of operation modes

Utility Cost

¥/day	Economic mode1	Economic mode2	Green mode
Summer	137.2	78.5	170.9
Sullillel	(<u>ba</u> sę),		
· Fall –	55.0	28.3	74.1
Fall	(base)		
Winter -	375.0	337.7	452.7
vviiitei	(base)		
average	189.1	148.2	232.6

¥/day	Economic mode1	Economic mode2	Green mode
Summer –	107.4	105.7	76.1
Fall -	77.9	76.1	36.1
Winter	229.1	232.3	197.2
average	138.1	138.0	103.1

From the viewpoint of the whole society, Green mode charging EV with PV surplus is the greenest with the least primary energy consumption.

Thank you

