2017 IERE-TNB Putraja Workshop : Technologies Shaping the Electric Supply Industry

Decentralization and Cooperative Management in Electric Energy System

Hideo Ishii, Ph.D.

November 22, 2017 Advanced Research Organization for Smart Society Waseda University

Change in the electric energy policy through "3.11"

March 11, 2011

After "3.11"

Before "3.11"

Realization of Low Carbon Society by deploying energy management system

 ✓ Installation of high-efficiency equipments & appliances
 ✓ Integration of renewable energy
 ✓ Integration of EV/PHV
 ✓ Balancing demand-supply for electricity & gas

etc.

Electricity saving Peak cut in electricity demand

Long term perspective of electricity demand & supply

COP21 Paris Agreement : GHG deduction by 26% from 2013

Foundation of the Policy

- Elevating Energy Self-Sufficiency : 6% → 25%
- Reducing Energy Cost : lower than present

Supply Side

- Electric Power System Reform
- Mixed use of various resources while increasing RES

Demand Side

- Smart Energy Saving : Energy Management / FEMS, BEMS, HEMS
 → NET Zero Energy House / Building (ZEH / ZEB)
- Smart Demand : Demand Response
- Co-Generation, FC
- EV / PHV Battery, Storage

Transition of Electric Energy System

Paradigm Change in Electric Energy System

✓ Electric Power System Reform✓ Large scale RE installation

- Large Power Plants + Bulk Grid
- Demand : Given (Forecast)
- Vertically Integrated

- Power Flow : one way
- Basically Dispatchable Generation

- Cooperation with Distributed System
 - Various Resources: e.g. EV, Battery
 - Integration vs Local Optimum
- Demand : Control
 - DR, Nega-watt Trading
 - Horizontally Divided
 - New Rules, e.g. Simultaneous Equivalence
- Power Flow : bi-directional
- Intermittent (Renewable)

Supply-Demand Balance Control

Forward control based on demand prediction

•LFC (Load Frequency Control) For unpredictable demand variation ($1 \sim 2\%$ of total demand)

•GF (Governor-Free)

For fast demand variation which can not be covered by LFC

New Electric Energy System

- ✓ Two-way power flow
- Combination of central & distributed control
- Co-existence of different optimization : supply-demand balance & new values
 - maximum use of renewable energy recourses
 - efficient use of energy including heat, transportation, etc.
- Resiliency : preparation for emergency

New kind of Control for Grid Operator Demand Response and PV Generation

- Not necessarily owned by grid operators
- ✓ Various sizes
- The smaller, the larger the number

RIANT Overview

RIANT : Research Institute for Advanced Network Technology

Research Area

- Distribution network operation methodologies and algorism
 - voltage regulation
 - loss minimization
- Home Energy Management and Human Comfort
- Data analysis and application
 - Forecast : demand, RE generation

National Project

- Distributed cooperative EMS (CREST)
- Home Energy Management + Demand Response & Standardization
- WP & PV variation mitigation in power grid + Smart Inverters
- International Standardization of Communication connecting Grid and Customers

Shinjuku Demonstration Center Layout

イメージ写真

Devices and Appliances in Shinjuku Demo. Center

Demand Response Test with Demand Side Equipment

DR & RES Dispatch Center

Distribution line voltage control

• Sensing : voltage / current

- Utilizing AMI
- Autonomous / Central control of voltage regulators (SVR, LTC, etc.)
- Forecast : Demand, PV generation
- Smart Inverters

Energy Resource Aggregation

- Cooperative Management & Integration of various energy resources by "aggregation"
- ✓ Load : Air conditioner, Lighting Water Heater
- ✓ Storage : Battery, EV/PHV
- ✓ Generation : PV, Generator, FC
- Architecture, Function Allocation
 & Standard Communication

Japan Science & Technology Agency CREST

Core Research for Evolutionary Science and Technology

"Development of distributed cooperative EMS methodologies for multiple scenarios by using versatile demonstration platform"

THE UNIVERSITY OF TOKYO

Targets of EMS Project

1. Propose integrated cooperative EMS methods for multiple scenarios

Concept of EMS Platform for Designing Sustainable Smart City

Sustainable indices of smart city

17

Spatiotemporal Modeling of City in EMS Platform

Evaluation Result of PV Curtailment in Target City

[Target city] 10,546 households, PV 80%, 18 feeders

Open DATA based on actual distribution grid

hideishii@aoni.waseda.jp