

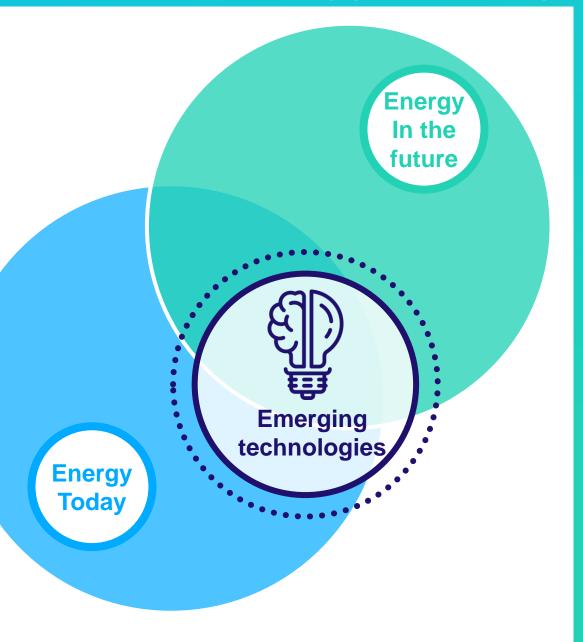
Emerging Sustainable Technologies

Report from 2020 Technology Watch

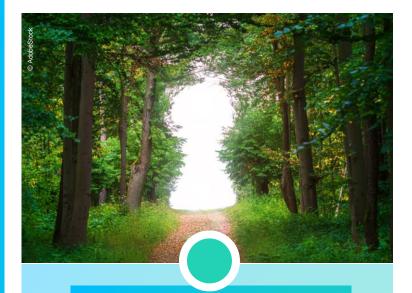
Authors: Elodie Le Cadre Loret, Jan Mertens, Jean-Pierre Keustermans, Monique Creach

Based upon discussions with ENGIE LABS experts

Laurent Baraton, Koenraad De Bauw, Emmanuel Girasa, Jim Gripekoven, Han Ngoc Huynh Thi, Maxime Hervy, Yilmaz Kara, Nouaamane Kezibri, Hélène Lepaumier, Camel Makhloufi, Jos Menting, Lionel Nadau, Ana Novak-Zdravkovic, Célestin Piette


Just before the start...

Objective of this document


Present a selection of emerging technologies that:

- Impact Energy today
- Very likely will impact Energy in future
- May impact Energy directly or indirectly even though today they seem far away from our current and 'planned' future activities...

So where possible link is made with our activities but not always straightforward TODAY...

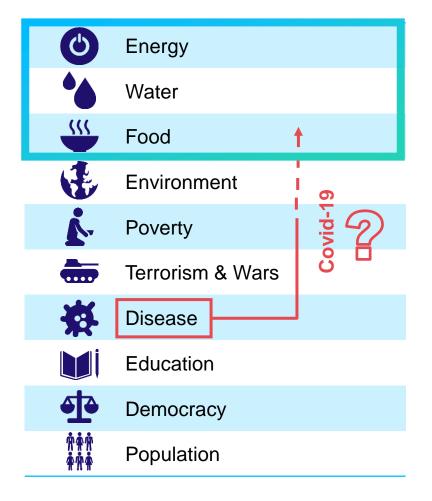
Introduction

Green energy is the key enabler for solving the top 10 issues that we face

Only 25 % of the required CO₂ emissions to meet carbon neutrality can be achieved using mature technologies

CO₂ as a resource will be part of the portfolio of technologies required to meet carbon neutrality

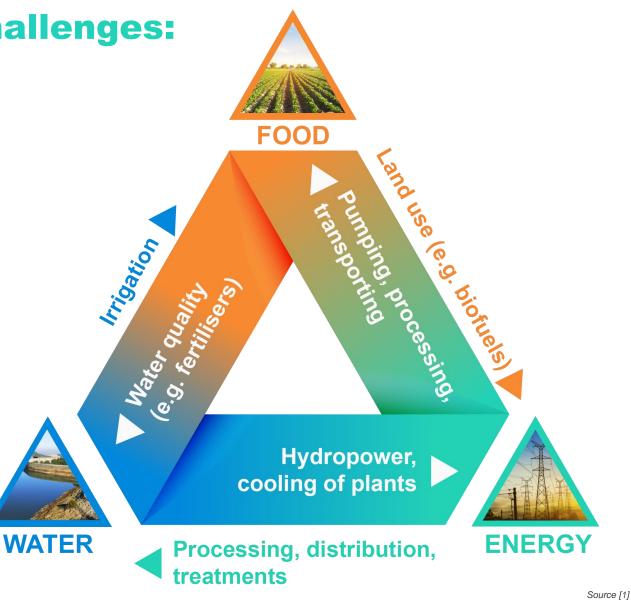
Green energy is the key enabler for solving the top 10 issues that we face


We need to adress the first three structural challenges to ensure having the means to fight the other ones!

1986 Nobel Prize-winning chemist, Professor Richard Smalley identified what he felt were the top 10 issues facing the world and their link with energy:

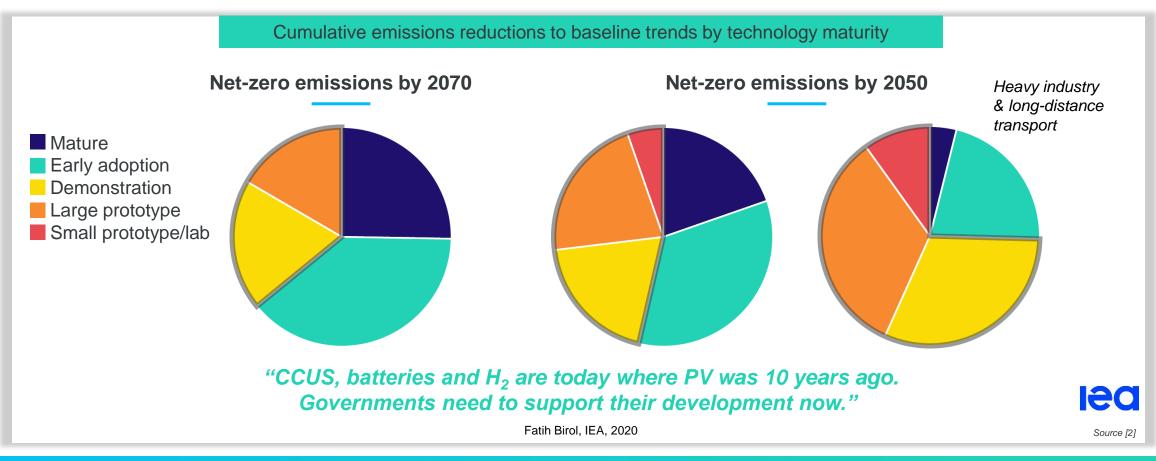
"Clean water is a great example of something that depends on energy. And if you solve the water problem, you solve the food problem."

R. Smalley, Lecture at NREL In Golden, Colorado, 2003



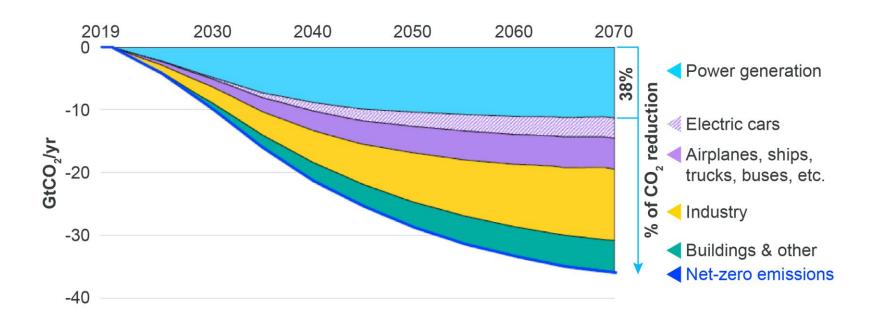
Let's focus on the first 3 challenges: the nexus approach

Water > < Food: Water is the keystone for the entire agro-food supply chain.

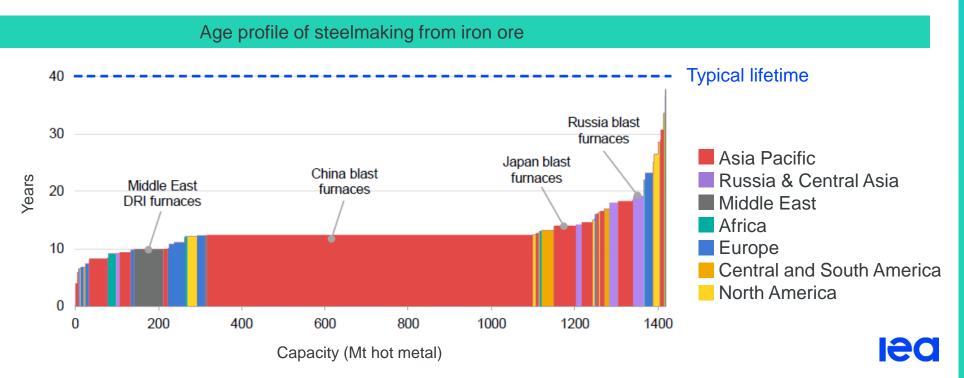

Food Energy: Energy is an essential input throughout the entire agro-food supply chain, from pumping water to processing, transporting and refrigerating food.

Energy Water : While water plays a key role in energy production, energy is required to process and distribute water, to treat wastewater, to pump groundwater and to desalinate seawater.

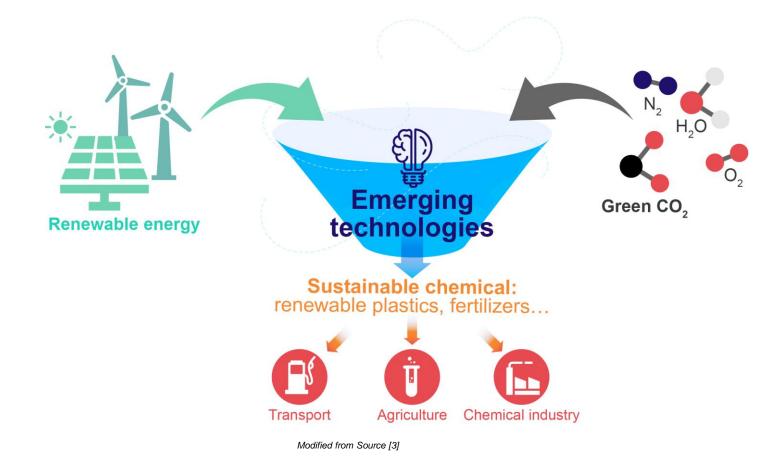
More than half of the emissions reduction will have to come from not mature technologies


We need to need to speed up R&D and Innovation!

For these non-mature technologies, green electricity generation is crucial but not sufficent as it will only reduce our overall emissions by 38%


We will need also green molecules (gases/liquids) for industry, building and transport

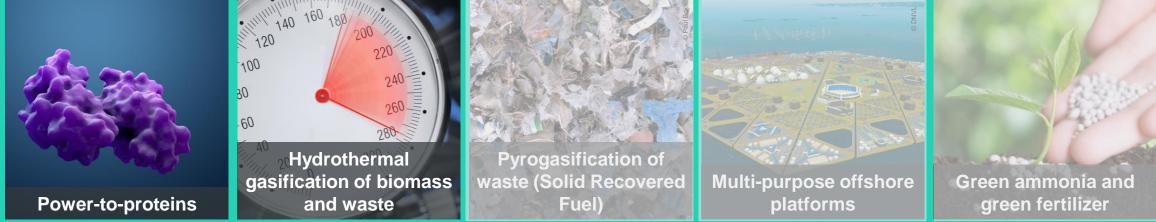
Global CO₂ emissions redutions in the Sustainable Development Scenario, relative to baseline trends



led

We must not only build new clean aluminium, cement, iron and steel, chemical plants BUT must address emissions from EXISTING infrastructure since many assets are still young! CCUS and H₂ will be required

Why the carbon neutral energy transition will require lots of Carbon (C)? CO_2 as a resource will be part of the portfolio of technologies required to meet carbon neutrality



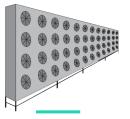
BUT "Due to efficiency losses in capturing and converting atmospheric CO₂, the production of renewable molecules will increase the overall demand for renewable energy drastically."

Mertens, Belmans and Webber, 2020

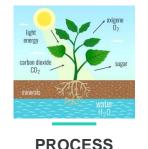
Emerging Sustainable Technologies

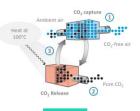
Emerging Sustainable Technologies

Direct air capture for circular carbon economy

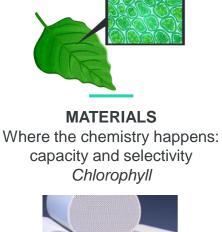

CO₂ capture from the air: myth or reality?

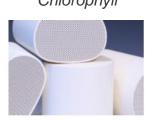
Technology wise, a reality

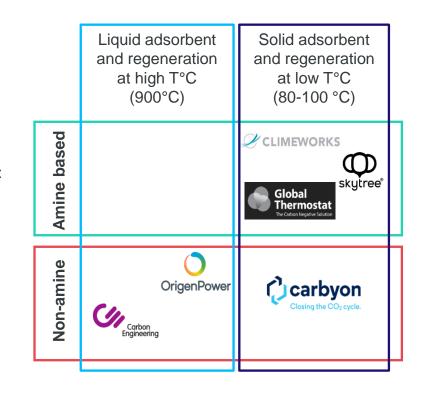

 Carbon dioxide can be removed from ambient air through chemical processes based on acid-base reactions. Direct Air Capture (DAC) is comparable to the respiratory system or the photosynthesis.


The system moves the air to the process *Tree*

SYSTEM Fans are processing air through large contactor arrays




The process releases captured gases from the material *Photosynthesis*


PROCESS Cyclic process: absorption on materials and desorption by heat

Modified from Source [5]

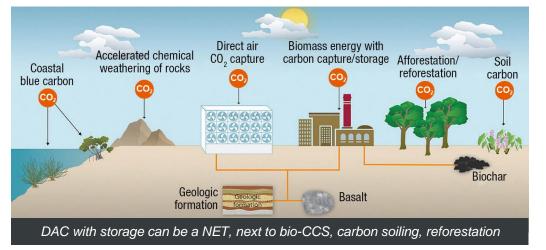
MATERIALS Contactor: solvent or solid sorbent

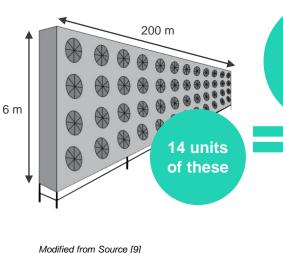
Sources [5], [6]

Why capture from the air when there are so many **concentrated CO₂ sources?**

Advantages

- DAC can capture the CO₂ emitted by decentralized sources (e.g. transport)
- It can be decentralized towards sites that offer a cheap source of renewable electricity and heat
- Deployed closed to CO₂ storage sites, DAC becomes a Negative Emission Technology (NET)
- Its modular construction means many of them can be built which can drive down cost


Challenges


 CO_2 in the atmosphere is highly diluted (~400 ppm):

- Large energy footprint
- Cost
- Large land footprint

These challenges can be overcome by:

- Contactor development
- Low carbon energy, such as waste heat in the case of low temperature DAC

Capture the same amount of CO₂ as this

> Petra Nova – 1.4 Mt CO₂/year 115 m tall, 20 m large absorber

> > Sources [8], [9]

Modified from Source [9]

CO₂ capture from the air: myth or reality?

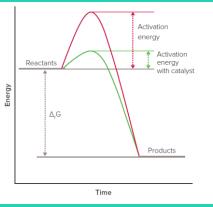
Next 5-10 years a major milestone to go from myth to reality

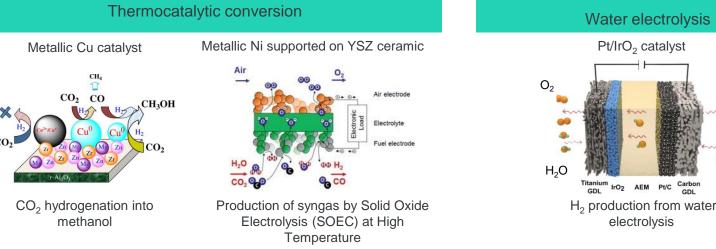
The leading DAC technology developers are all striving for the first large scale demonstration where the economics and technology performances will be proven in an integrated business model (Enhanced Oil Recovery,e-fuels). 2025 will be a major milestone for DAC.

Roadmap	< 2015	2015- 2020	2025	2030	
	6	6	66	000 000	
	Prototype	Pilot	Demo	Commercial	
Tons/year	1	1000	10,000	> 1,000,000	
Proof	Material	Technology	Economics	Profit & Impact	

Emerging Sustainable Technologies

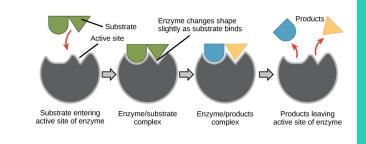
Sustainable catalysts as energy transition enablers

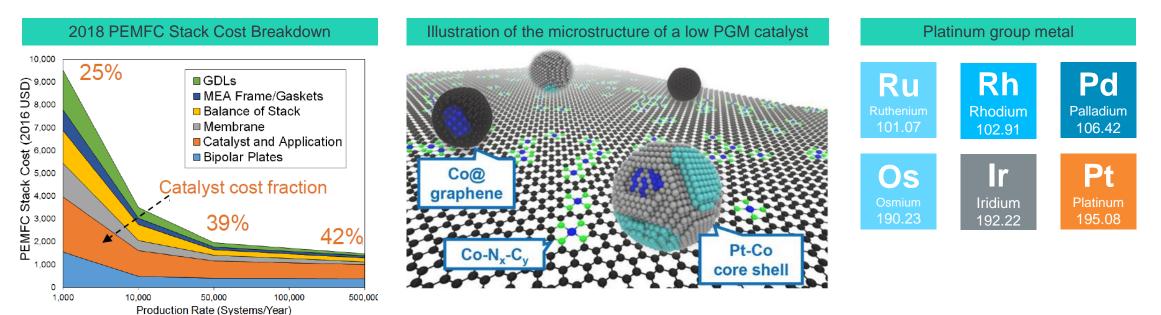

Catalysis is a key enabling technology for energy transition


- Both energy (heat, electrons, photons) and catalyst are required to convert thermodynamically stable molecules, i.e. H₂O and CO_2 , into value-added products.
- Catalysts are chemical substances increasing the reaction rate without being consumed to reach the chemical equilibrium at a suitable temperature. They do not change the thermodynamics and can be used cyclically.

• Its performance is driven by:

- Its composition (nature of the metal, enzyme...)
- Structure / morphology / microstructure
- Type and nature of support
- Immobilization method
- A catalyst is specific for each final product, reaction conditions and type of process:


Comparison of activation energy with (green) and without (red) a catalyst

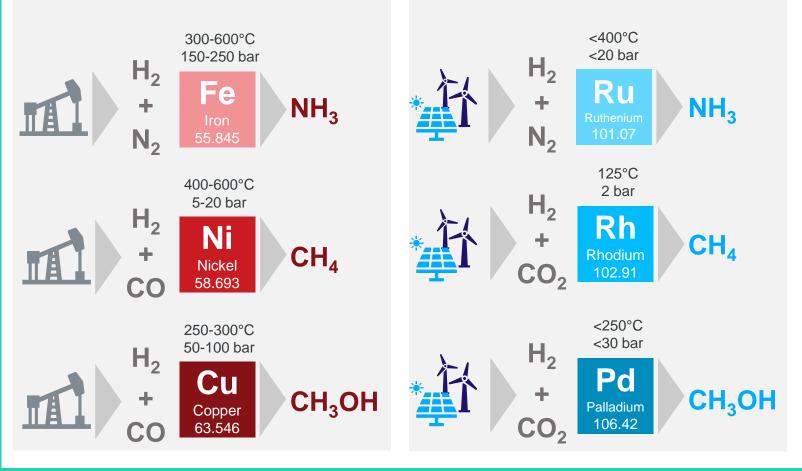

Biocatalytic conversion

Platinum group metal (PGM) catalysts dominate today's applications

CHALLENGES

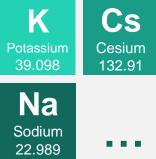
- Even at high production volumes, the PGM catalyst is expected to represent a significant part of the fuel cell cost.
- The wide development of electrochemical processes, that bridge the molecule-based economy with a green electricity production should avoid the intensive use of PGM materials. As such, a large scientific effort is devoted to the development of low-PGM and PGM-free catalysts.
- Developments of new catalytic materials with improved performance are focused on composition and microstructure.

Conventional catalysts


- × Fossil fuel feedstock
- × Harsh reaction conditions
- Low process flexibility
- ► Low catalyst activity
- Abundant and cheap materials

Alternative catalysts

- Renewable feedstock
- Mild reaction conditions
- Higher process flexibility
- Higher catalyst activity
- Rare and expensive materials


Tomorrow's catalysts

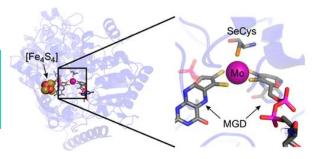
- Renewable feedstock
- Mild reaction conditions
- High process flexibility
- High catalyst activity
- Non-transition metals

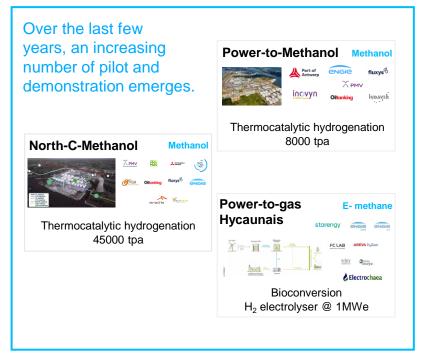
250°C

Future catalyst will have to be based on earth-abundant materials and will require to work at moderate pressure and temperature ultimately

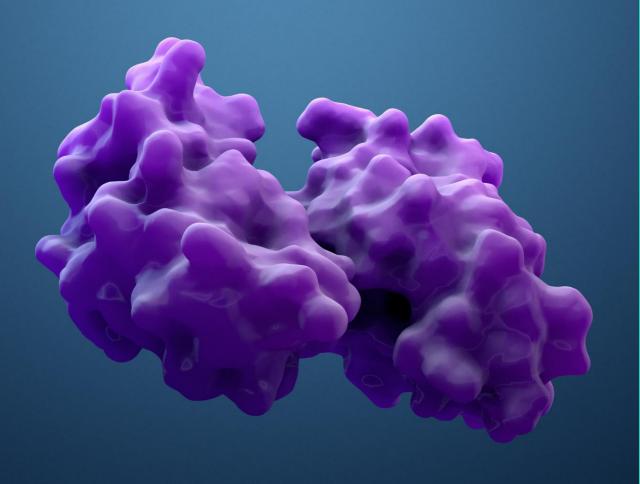
The biocatalytic approach could allow the convergence of both approaches

ADVANTAGES


Mimicking the reactions taking place in living organisms, biocatalysis has many attractive features in the context of green and sustainable chemistry:

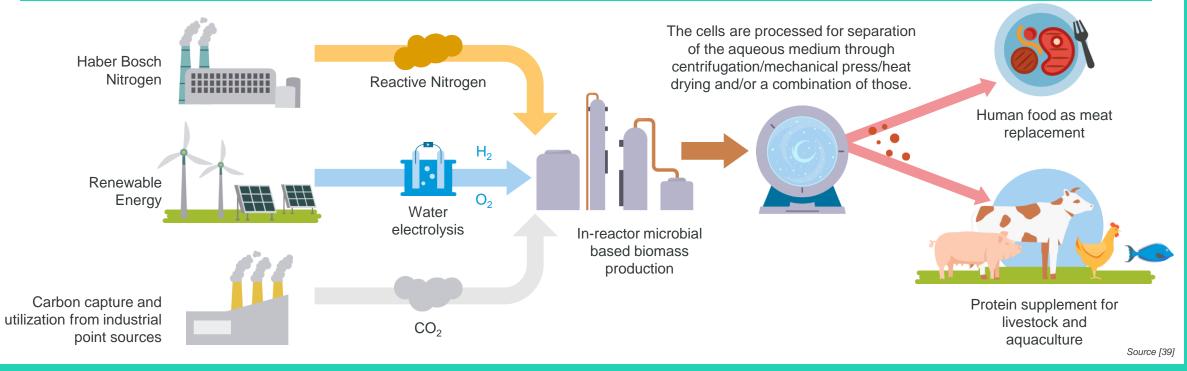

- Mild reaction conditions: ambient temperature and pressure
- High flexibility
- Efficient
- Highly selective
- Sustainable : biodegradable catalyst (enzyme)

Formate dehydrogenase with focus on the active site of Mo for the CO₂ reduction into formate


CHALLENGES

- Recycling biocatalysts
- Development of more stable biocatalysts according to two different approaches:
- Keep wild type organisms / enzymes and select organisms that live in extreme environments as these will be naturally more stable.
- Engineer it using genetic tools

Emerging Sustainable Technologies

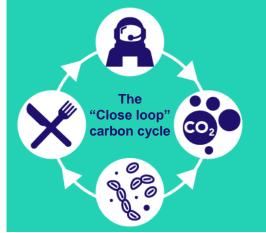


Power-to-proteins

Power-to-proteins approach consists in the production of a protein-rich material by bacterial cultures using electrolytic H₂ as energy source

 Commonly used microorganisms are hydrogenotrophs like Cupravidius necator, Rhodococcus opacus or Hydrogenobacter thermophiles. These bacteria oxidize hydrogen in anaerobic conditions to power their metabolism and accumulate proteic biomass at high rates (kg/m³.h scale)

Power-to-protein concept for food/feed production: a process that decompartmentalize energy, biology and agriculture sectors.



This no-brainer protein production pathway remains to be demonstrated economically at scale and socially accepted

Parameter	Animal based	Vegetable based	Microbial
Land footprint	High and only arable	Medium and only arable	Low and can be barren
Water use	High	High	Low
Greenhouse gases footprint	High	Medium	Low
Production time	Days to years, non seasonal	Months, seasonal	Days, non seasonal
Proteic efficiency	Low	Low	High
Nutrients environment spillover	Large, linked to vegetal feed needs	Large, through N emissions when fertilisers are applied	Close to 0
Resilience towards climate change	Low due to ecosystems change		High as it is decoupled from the environment
Pesticide and antibiotics use		No	
Sterile environment	No	No	Yes

Comparison of animal, vegetable and bioconversion protein production pathways.

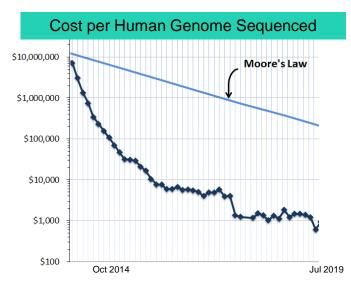
Food for astronauts?

Food cargo is a large expenditure when it comes to space exploration. Producing it autonomously is thus a huge opportunity. Power-to-proteins was actually initially developed for that application by NASA and still viewed as a long-distance space exploration enabler.

CHALLENGES:

- Foremost challenge is to make it renewable and economical as hydrogen is the main cost
- Social acceptance of eating a microbe or eating meat produced on microbes.

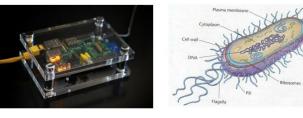
A dynamic portfolio of start-ups developing the subject at different stages and with different focuses. Oil and gas as well as electricity utilities are partnering



The steadily growing biotech economy is experiencing an ever growing momentum pulled by key enabling technologies to harness biology without wasting resources

Biotechnologies have been ever rising since a couple of decades through 3 main different sectors: **Industrial**, **pharmaceutical** and **agricultural applications**. Today, pharma sector is leading but the grow is cross sectorial.

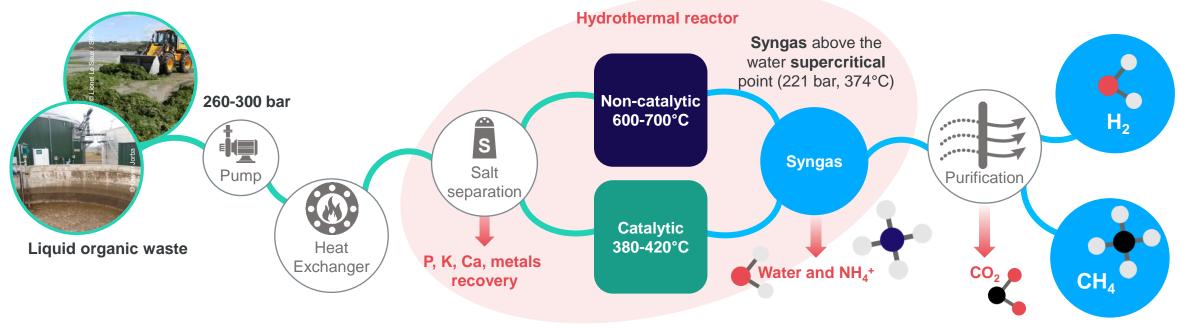
Currently, an **even stronger development** of the sector is observed due to several factors:


- Dropping DNA sequencing costs to access massive information
- Artificial intelligence (especially machine learning) developments to manage the massive amount of data
- CRISPR/Cas9 development, a genetic editing tool to screen large number of precisely edited mutants
- Laboratory increasing **automatization** capacity

Similarities with the informatics wave?

Actors in the field sometimes compare this evolution to the computer and IT revolution that occurred the past decades as both show **impressive growth and several similar concepts**

"Blank" chassis	"Evolutionary" based			
	chassis			
Constructed by modules (parts)				
Behavior code based				
Non self replicative	Self coding and self			
	replicative			
Possible contamination by external code				
Similarities with IT exists but fundamental differences				


Emerging Sustainable Technologies

Hydrothermal gasification of biomass and waste

Hydrothermal Gasification converts liquid organic waste into green gases in contrast to pyrogasification processes which valorizes dry organic waste

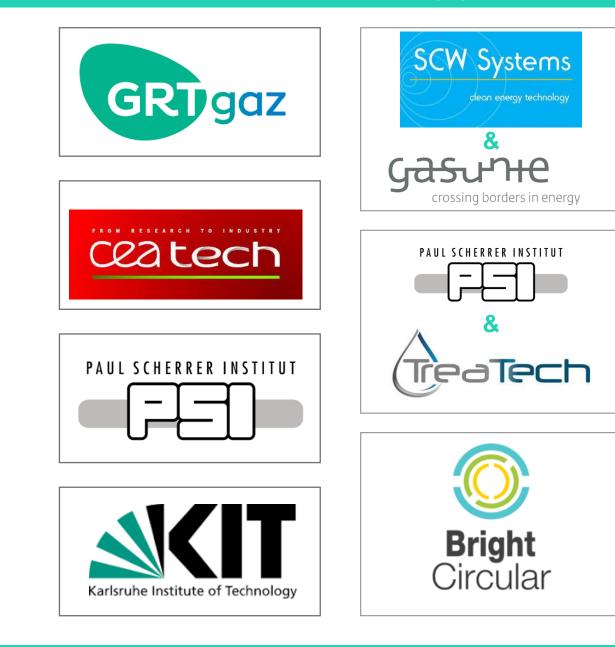
Hydrothermal Gasification is gasification in hot compressed water which uses water in a supercritical state

Production of syngas, CH₄, H₂, or chemicals

Raw syngas can be valorized either directly for heat and/or electricity production, or purified to clean CH₄ or H₂, or converted into chemicals.

- CH₄ content reaches 50-60% in catalytic conversion, and up to 90% when H₂ is co-injected in the gasifier
- H_2 concentration can achieve 50-75% in syngas

Hydrothermal Gasification is either a complementary or competitive alternative pathway for green gas production from organic waste


ADVANTAGES

- Complementary to pyrogasification process which valorizes dry organic waste and to anaerobic digestion (AD) by valorizing liquid digestates in saturated spreading zones
- Efficient production of CH₄ or H₂ depending on the operating conditions and process chain (CH₄ production is doubled compared to AD)
- Fast conversion (<10min) → compact units (10 times more compact than AD)
- Co-production of minerals (P, K, Ca) and NH₄+ possibly valorized as fertilizer -> extra-revenues
- Low quantity of final solid residue generated
- No problem by using only one type of feedstock contrary to AD

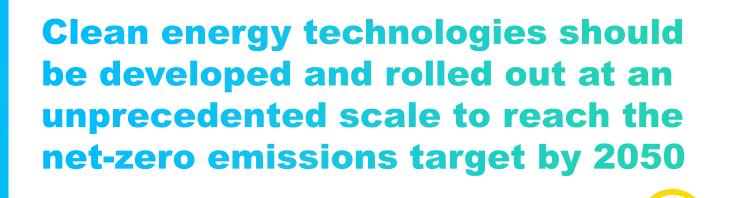
CHALLENGES

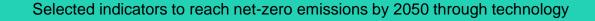
- Operating with high pressure and high temperature
- Optimisation of minerals separation to avoid plugging of the gasification reactor
- Preventing from catalysts deactivation by poisoning (sulfur compounds) and plugging (minerals precipitation)
- Scaling-up and simplifying the installation operation
- Potentially in competition with anaerobic digestion since both sectors valorize liquid organic fuels
- Uncertainty on profitability due to costly alloys for reactor and equipment to withstand operating conditions and corrosion

Gas companies and transport infrastructures are involved in the development of the sector by providing support to technology developers and to initiate pilot or demonstration projects

Conclusions

Enera


In the


future

2050

Energy

Today

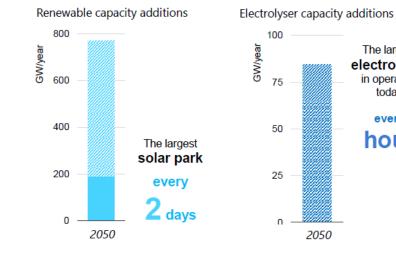
The largest

in operation

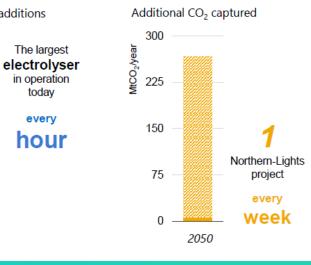
todav

every

hour


100

75


50

25

2050

2030

Source [3]

Discussion / Questions

Feel free to contact us @ jan.mertens@engie.com / elodie.lecadre@engie.com

Bibliography

[1] Smalley R.E., 2005. Future Global Energy Prosperity: The Terawatt Challenge. *MRS Bulletin*, Vol. 30, 6, 412-417.

[2] Global Water Partnership GWP, 2019. The Nexus approach: an introduction. <<u>https://www.gwp.org/en/GWP-Mediterranear/WE-ACT/Programmes-per-theme/Water-Food-Energy-Nexus/the-nexus-approach-an-introduction/</u>>

[3] IEA Energy Technology Perspectives, 2020.

[4] SUNRISE EU large scale research initiative vision of which ENGIE is a founding member

[5] Mertens J. et al., 2020. Why the Carbon-Neutral Energy Transition Will Imply the Use of Lots of Carbon. C – Journal of Carbon Research, 6(2):39.

[6] Mosaic Materials. Company presentation, 2020.

[7] ENGIE Research, 2020. Technology Position Paper on Carbon Capture.

[8] National Academy of Science

[9] Wilcox J., 2019. Direct Air Capture.

[10] Hydrostor - Goderich A-CAES Facility. <u>https://www.hydrostor.ca/goderich-a-caes-facility/</u>

[11] Fujihara T. et al., 1998. Development of Pump Turbine for Seawater Pumped-Storage Power Plant. Hitachi Review, Vol. 47, 5, 199-202. http://www.hitachi.com/rev/1998/revocl88/r4 108.pdf

[12] Concept of underground Adiabatic CAES developped by ENGIE <<u>http://www.smartgrids-cre.fr/index.php?p=stockage-gdf-suez</u>>

[13] Momen A., 2017. Novel Ground-Level Integrated Diverse Energy Storage (GLIDES) Coupled with Building Air Conditioning. Building Technologies Office Peer Review, US Deot of Energy.

<https://www.energy.gov/sites/prod/files/2017/04/f34/5_32290_Momen_031417-1100.pdf>

[14] FLASC Storage - < https://www.offshoreenergystorage.com>/

[15] Vella P. et al, 2017. A Review of Offshore-based Compressed Air Energy Storage Options for Renewable Energy Technologies. *9th European Seminar OWEMES 2017*.

[16] Segula Technologies, 2020. The Remora underwater energy storage project takes a new step forward in its implementation.<u><https://www.segulatechnologies.com/en/news/theremora-underwater-energy-storage-project-takes-a-new-step-forward-in-itsimplementation/></u>

[17] PackGy - <https://www.packgy.com/>

[18] NuScale - < https://www.nuscalepower.com/>

[19] CEEBIOS

[20] Faisal M.M.A. and Chowdhury M. A. I., 2016. Bio inspired cyber security architecture for smart grid. 2016 International Conference on Innovations in Science, Engineering and Technology (ICISET), Dhaka, pp. 1-5.

[21] Pacific Northwest National Laboratory, 2011. DigitalAnts™: Ant-Based Cyber Defense. <<u>https://i4.pnnl.gov/news/digitalants.stm</u>>

[22] Wlodarczak, P., 2017. Cyber Immunity - A Bio-Inspired Cyber Defense System. Bioinformatics and Biomedical Engineering: 5th International Work-Conference, IWBB/O 2017, Granada, Spain, April 26–28, Proceedings, Part II (pp. 199-208).

[23] Company: Dark Trace https://www.darktrace.com/en/

[24] Musliner D.J. et al., 2011. FUZZBUSTER: Towards Adaptive Immunity from Cyber

Threats. Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops, Ann Arbor, MI, 2011, pp. 137-140.

[25] Vivekia A. V. and Kumaratharan N., 2017. Performance Analysis for IDBAS and LWSEA Cryptography Technique in Generic Bio-Inspired Cybersecurity in SIWC model for WSN. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), vol. 2, Issue 3, pp. 87-95. http://iisrcseit.com/CSEIT1722401>

[26] Bitam S. et al., 2016. Bio-inspired cybersecurity for wireless sensor networks. *IEEE Communications Magazine*, vol. 54, no. 6, pp. 68-74.

[27] Gómez Mármol F. and Martínez Pérez G., 2011. Providing trust in wireless sensor networks using a bio-inspired technique. *Telecommun. Syst.* 46, 2, 163–180.

[28] Ren H. et al., 2015. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO. <u>Journal of Industrial and Engineering Chemistry, Vol. 28</u>, 261-267.

<https://www.sciencedirect.com/science/article/abs/pii/S1226086X15000738>

[29] Dueňas D. M. A. et al., 2020. High-temperature co-electrolysis for Power-to-X. Chem. Ing. Tech. 92 (1), 45.

[30] Park J E. et al., 2019. High Performance anion-exchange membrane water electrolysis. *Electrochimica Acta*, Vol. 295, 99-106. <https://www.sciencedirect.com/science/article/pii/S0013468618323831>

[31] Gafacom, 2019. Enzymes as biocatalysts. <https://www.gafacom.website/2019/09/enzymes-are-biocatalysts-their-classification.html>

[32] Papageorgopoulos D., 2019. Fuel Cell R&D Overview. Annual Merit Review and Peer evaluation Meeting. DoF.

[33] Chong L. et al, 2018. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science, Vol. 362, Issue 6420, pp. 1276-1281.

[34] Ojelade O.A. and Zaman S.F, 2020. A Review on Pd Based Catalysts for CO₂ Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. *Catal Surv Asia*, 24, 11–37. <<u>https://doi.org/10.1007/s10563-019-09287-</u>≥

[35] Colas Swalus et al., 2012. CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: "In situ" supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 125, 41-50. <<u>https://doi.org/10.1016/j.apcatb.2012.05.019></u>

[36] Sheldon R.A. and Brady D., 2018. The limits to biocatalysis: pushing the envelope. *Chemical Communications*, Issue 48.

[36] Schlager S. et al, 2017. Biocatalytic and Bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. *Energy Technol.* 5, 1-11.

[37] Pikaar, I. et al., 2018. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. Science of The Total Environment 644, 1525–1530.

[38] Pikaar, I. et al., 2017. Microbes and the Next Nitrogen Revolution. Environ. Sci. Technol. 51, 7297–7303.

[39] TED presentation « A forgotten Space Age technology could change how we grow food » by Lisa Dyson at TED@BCG Paris

[40] National Human Genom Research Institute Sequencing costs data. Cost per human genome.

[41] Carlson, R., 2016. Estimating the biotech sector's contribution to the US economy. *Nat Biotechnol.*, 34, 247–255. [42] Senior, M., 2020. Europe's biotech renaissance. Nat Biotechnol., 38, 408–415.

[43] Osada M. et al., 2006. Catalytic Gasification of Wood Biomass in Subcritical and Supercritical Water, Combust. Sci. Technol., 178 537–552. https://doi.org/10.1080/00102200500290807>

[44] Elliott D.C., 2008. Catalytic hydrothermal gasification of biomass, *Biofuels Bioprod. Biorefining*. 2, 254–265. <<u>https://doi.org/10.1002/bbb.74</u>>

[45] Peng, G. and Juillard F., 2020. Gazéification hydrothermale catalytique : production sélective de biométhane. *Conference Bio360*, Nantes.

[46]: He C. et al., 2014. Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review. Renew. Sustain. Energy Rev. Vol. 39, 1127–1142. https://doi.org/10.1016/j.rser.2014.07.141

[47] Elliott D.C. et al., 2004. Effects of trace contaminants on catalytic processing of biomass-derived feedstocks. Appl. Biochem. Biotechnol. Vol. 115, 807–825. <<u>https://doi.org/10.1385/ABAB:115:1-3:0807</u>>

[48] Kawasaki S.-I. et al., 2007. Flow characteristics of aqueous salt solutions for applications in supercritical water oxidation. J. Supercrit. Fluids. Vol. 42-2, 241–254. <u>https://doi.org/10.1016/j.supflu.2007.03.009</u>

[49] Zöhrer H. et al., 2014. Hydrothermal processing of fermentation residues in a continuous multistage rig – Operational challenges for liquefaction, salt separation, and catalytic gasification. Biomass Bioenergy. Vol. 65, 51–63. https://doi.org/10.1016/j.biombioe.2014.03.023>

[50] Ro K.S. et al., 2007. Catalytic Wet Gasification of Municipal and Animal Wastes, Ind. Eng. Chem. Res., Vol. 46, 8839–8845. <<u>https://doi.org/10.1021/ie061403w</u>>

[51] Osada, M. et al., 2007. Reaction Pathway for Catalytic Gasification of Lignin in Presence of Sulfur in Supercritical Water. Energy Fuels. Vol. 21, 1854–1858. <<u>https://doi.org/10.1021/ef0701642</u>>

[52] Dreher M. *et al.*, 2013. Catalysis in supercritical water: Pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. *J. Catal.* Vol. 301, 38–45. <<u>https://doi.org/10.1016/j.jcat.2013.01.018</u>>

[53] Schirber M., 2008. How Floating 'Energy Islands' Could Power the Future. Livescience.com. <<u>https://www.livescience.com/3063-floating-energy-islands-powerfuture.html</u>>

[54] <u>Van Hertem</u> D., 2016. Drivers for the development of HVDC grids: For Offshore and Supergrid of the Future. In book: HVDC Grids.

<https://www.researchgate.net/publication/313144456>

[55] Dalton G. et al., 2019. Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. <u>Renewable and Sustainable Energy Reviews</u>, Vol. 107 - Pages 338-359

[56] Nassar W.M. et al., 2020. Assessment of Multi-Use Offshore Platforms: Structure Classification and Design Challenges. Sustainability, 12(5), 1860.

[57] DNVGL. Technology Outlook 2030. Multipurpose offshore platforms. <<u>https://www.dnvgl.com/to2030/technology/multipurpose-offshore-platforms.htmlik-.itext=Multipurpose%20offshore%20platforms%20may%20combine.different%20degrees%20and%20constellations2.></u>

[59] Leira B.J., 2017. Multi-purpose offshore platforms: past, present and future research and developments. OMAE2017, Trondheim, Norway. <<u>https://ntruopen.ntru.no/htnuxmlui/bitstream/handle/11250/2495824/OMAE-2017-Multipurpose-platforms-February-26.pdf?sequence=16isAllowed=y></u> [59] Madrid, U.P.d. D4.3 Complete Design Specification of 3 Reference TROPOS Systems; Tropos EU: Madrid, Spain, 2015.

[60] European Commission. Multi-use of the marine space, offshore and near-shore: pilot demonstrators. Funding & tender opportunities

<https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topicdetails/bg-05-2019>

[61] ENTSOE, 2018. The future of the EU grid and the role of AC and DC Technologies. DC –Hybrid grids Roundtable

<https://ec.europa.eu/energy/sites/ener/files/documents/3.schmitt_entsoe_dchybridgrids_roundtable.pdf>

[62] ModernPowerSystems, 2020. Getting green hydrogen production into deep water: the Dolphyn project. < <u>https://www.modernpowersystems.com/features/featuregetting-greenhydrogen-production-into-deep-water-the-dolphyn-project-7780776</u>

[63] Neptune Energy, 2020. DEME adds windfarm expertise to PosHYdon hydrogen pilot. <<u>https://www.neptuneenergy.com/media/press-releases/year/2020/deme-adds-windfarmexpertise-neptunes-poshydon-hydrogen-pilot></u>

