

Study on Calculation Method of Carbon Emission in Utilization of ACCC Conductor in New or Modified Power Lines

Xin Li Nari Group

I

Characters and Advantages of ACCC

II

Description of Methodology

Ш

Case Analysis-Energy Saving

ACSR

ACCC

ARI GROUP CORPORATION / STATE GRID ELECTRIC POWER RESEARCH INSTITUTE

Compared with ACSR

- > Higher tensile strength
- ➤ Lower CTE
- ➤ Greater ampacity
- ➤ Without Replacing Tower

A goal of Pari Climate 2015

2 °C compared to preindustrial levels.

"Pursue efforts to" limit the temperature increase to 1.5 °C

п

Description of Methodology

Ш

Case Analysis-Energy Saving

Baseline emissions (BEy)

$$BE_v = Q_{Line, BL, v} \times EF_{Elec, v}$$
 (1)

BE_y—Baseline emissions in year y (tCO2);

 $Q_{Line, BL, y}$ —The quantity of line loss at the baseline condition, as a result of the implementation of the CDM project activity, in year y, in accordance with monitoring data (MWh);

 $EF_{Elec, y}$ — CO_2 emission factor of the electric transmitted by grid in year y (t CO_2 /MWh).

Line losses at baseline scenario (QLine, BL, y)

For single phase circuit

$$Q_{Line,BL,y} = n \frac{\sum_{i=1}^{m_y} (I_{PJ,i,y}^2)}{m_y} r_{BL} L_{BL} T_y / 10^6$$

For three-phase lines

$$Q_{Line,BL,y} = 3n \frac{\sum_{i=1}^{m_y} (I_{PJ,i,y}^2)}{m_y} r_{BL} L_{BL} T_y / 10^6$$
 (3)

Project emissions (PEy)

$$P_{\rm Ey} = Q_{Line, PJ, y} \times EF_{Elec, y} \tag{4}$$

PEy—Project emissions in year y (tCO2);

QLine, PJ, y——The quantity of line loss at the project condition, as a result of the implementation of the CDM project activity, in year y, in accordance with monitoring data (MWh);

EFElec, y—CO2 emission factor of the electric transmitted by grid in year y (tCO2/MWh).

Line losses at project scenario (QLine, PJ, y)

For single phase circuit

$$Q_{Line,PJ,y} = n \frac{\sum_{i=1}^{m_y} (I_{PJ,i,y}^2)}{m_y} r_{PJ} L_{PJ} T_y / 10^6$$
 (5)

For three-phase lines

$$Q_{Line,PJ,y} = 3n \frac{\sum_{i=1}^{m_y} (I_{PJ,i,y}^2)}{m_y} r_{PJ} L_{PJ} T_y / 10^6$$
 (6)

Emission reductions (ER_y)

$$ER_{v} = BE_{v} - PE_{v} \tag{7}$$

ERy ——Emission reductions in year y (tCO2/y);

BEy—Baseline emissions in year y (tCO2/y);

PEy—Project emissions in year y (tCO2/y).

Description of Methodology

III Case Analysis-Energy Saving

Case Analysis-Energy Saving

Transmission line technical parameters

```
Environmental Parameters:
Sunlight intensity=1026.9W/m<sup>2</sup>;
Environmental Temperature=30°C;
Wind speed=0.6m/s;
Wind direction=90°.
Operating parameters:
Line length (L_{PI}) = 100 \text{ km};
Parallel number (n) = 1;
Line running time (T_v)=8760 \text{ h};
CO_2 emission factor (EF_{Elec. v}) = 0.8 tCO_2/MWh.
```

Case Analysis-Energy Saving

Item	Unit	Result			
U	kV	35	110	220	500
ACSR Type	-	228-LGJ- 120/20	369-LGJ- 185/25	592-LGJ- 300/40	789-LGJ- 400/50
ACCC Type	-	291-148/20	471-239/24	745-378/44	1019-517/44
PE ₁	tCO ₂	57,294	63,308	141,074	300,529
BE_1	tCO ₂	77,187	85,090	181,775	407,123
ER ₁	tCO ₂	19,893	21,782	40,701	106,594
Reduction ration	-	25.8%	25.6%	22.4%	26.2%

NARI GROUP CORPORATION / STATE GRID ELECTRIC POWER RESEARCH INSTITUT

Q & A