Recent trends on the interconnection between power storage facilities and real systems in Japan and the United States.

18th May 2017 Japan Electric Power Information Center (JEPIC) Kawano Joji

Introduction

Advantages of renewable energy introduction to the grid

- Environment-friendly
- Low running costs

 Renewable energy introduction is expected to increase to realize a low-carbon society.

Problems of renewable energy introduction to the grid

- Intermittent power generation (Strongly depends on the weather conditions)
- <u>Reducing reliability of the grid</u>

 <u>A solution is needed to increase renewable energy introduction to</u> the grid.

Introduction

Example of reduced reliability of the grid #1

(Comment)

- The results listed above cause a reduction in the value of the base load generation.
- A sudden increase of demand will be observed around dusk.

(Solution)

- Expansion of pumped Hydro.
- Reduction in the volume of interconnectivity.

Introduction

Example of reduced reliability of the grid #2

"Fluctuations" are caused by the attribute of electricity, therefore a new solution is needed to increase renewable energy development. And one of the solutions is "energy storage batteries" that make it possible to store electricity. We will introduce Japan and U.S. initiatives in energy storage batteries as case examples.

Purposes of interconnected energy storages

Interconnecting batteries to the grid has the following advantages.

- Batteries can be used for two purposes.
 - ····Charging and discharging are possible whenever you like.
- Less loss and more environmentally-friendly while charging and discharging.
 - •••Compared to other energy storage systems, the batteries have a small environmental load at charge and discharge.
- Added uses can be developed.
 - ••• In addition to the use described above, batteries have other uses such as in virtual power plants which improves the performance and reliability of the grid.

Suppliers' concerns

Survey results

Electric power suppliers' interests and concerns in Japan were surveyed by JEPIC.

Suppliers' interests

(N=28, multiple answers allowed)

- We surveyed participants' interests on application of energy storage systems.
- They have interests in each application.
- They need various types of information about how to apply energy storage.
- We surveyed participant's concerns when installing energy storage systems.
- We think performance and the cost of battery systems are in everyone's interest.

These results indicate that suppliers have a strong interest in energy storage systems, and therefore we have reported recent trends on the interconnection between power storage batteries and real systems in Japan and the United States.

Recent demonstrations in Japan

Source: Japanese electric power companies' web sites

Recent demonstrations in Japan

Recent demonstration by Hokkaido EPCo.

Minami-Hayakita Substation Large-Scale Storage Battery System Project

Project profile

- 60 MW of redox flow batteries has been installed in the Minami Hayakita substation.
- Development of the frequency control method by using BESS as a power supply for frequency adjustment
- Development of operational techniques against surplus electric power
- Performance evaluation of the redox-flow battery, etc.
- Test period FY 2013-2018.
 Construction: FY2013-2015
 Demonstration: FY2015-FY2019
- Supported by METI

Hokkaido Electric Power Co., Inc. ANNUAL REPORT 2015 http://www.hepco.co.jp/corporate/ir/ir lib/pdf/annual2015.pdf

Recent demonstration by Hokkaido EPCo.

Minami-Hayakita Substation Large-Scale Storage Battery System Project

Overview of energy storage facility

- Tanks of electrolyte solutions are stored on the 1st floor.
- Cell stacks, and heat exchanger are stored on the 2nd floor. Footprint: 5,000 m² Output: 15 MW Capacity: 60 MWh

Recent demonstrations in Japan

Recent demonstration by Tohoku EPCo. #1

Nishisendai Battery Storage Verification Project

Tohoku Electric Power Co., Inc. ANNUAL REPORT 2016 1 http://www.tohoku-epco.co.jp/ir/report/annual_report/pdf/ar2016.pdf

Central Load

Dispatching Center

Instruction

Recent demonstration by Tohoku EPCo. #2 Minamisoma Battery Storage Verification Project

Objectives		Improvement of balance of demand and power supply with large scale battery.	Utilizing pumping-up power and charging the batteries, at a time when a huge amount of generated output of renewables could lead to oversupply Wind
Details	Location	Minamisoma Substation (Minamisoma city, Fukushima Prefecture)	Forecast and Control Base Generation Capacity
	Specifi- cations	Lithium-ion battery Output: 40 MW Capacity: 40 MWh	Substation Solar Output
	Test period	FY 2016-2017	solar
	Support	Associations	Gas Gas Large Scale "BESS"
	-		Pumping-up

Recent demonstrations in Japan

Chugoku EPCo

Legends Symbols O: Solution for Renewable Energies Colors Red: Lithium-ion Blue: Sodium-Sulfur (NAS)

Copyright(C) T-worldatlas All Rights Reserved

Recent demonstration by Chugoku EPCo.

Demonstration Project utilizing Hybrid Storage Battery System on the Oki Islands

Specifications of hybrid battery

Project profile

- ✓ In order to maximize renewable energy, a hybrid battery system will be installed, constructed with two types of batteries which have different characteristics.
- ✓ Charge-discharge management and control technology will be tested in the field.

EnerGia ANNUAL REPORT 2016 http://www.energia.co.jp/e/ir/report/pdf/ar16/ar16.pdf

Recent demonstration by Chugoku EPCo.

Demonstration Project utilizing Hybrid Storage Battery System in the Oki Islands

- Overview of the energy storage facility
 (1) Location
 Oki Islands (at the Nishino Shima substation)
- (2) Battery System (Hybrid System)Sodium sulfur battery: 4.2 MW (25.2 MWh)Lithium-ion battery: 2.0 MW (0.7 MWh)
- 2. Test period Construction: FY2014-2015 Demonstration: FY2015-FY2018
- 3. Supported by MOE

Recent demonstrations in Japan

Kyushu EPCo

Legends Symbols : Others Colors Blue: Sodium-Sulfur (NAS)

Copyright(C) T-worldatlas All Rights Reserved

Source: Japanese electric power companies' web sites

Recent demonstration by Kyushu EPCo.

Demonstration at Buzen Battery Substation

Buzen coalfire power plant

- Project profile 1. Location Buzen coalfire power plant (Buzen city, Fukuoka Prefecture)
- 2. Objectives
- ✓ To improve the balance of supply & demand
- ✓ To control grid voltage/frequency
- ✓ To evaluate the battery system
- 3. Battery specification Sodium-Sulfur battery Output: 50 MW Capacity: 300 MWh Footprint: 14,000 m²
- 4. Test period FY 2015-2017
- 5. Supported by METI

Kyushu Electric Power Group Medium-term Management Policy http://www.kyuden.co.jp/var/rev0/0053/7385/ji06d57xm764dh7.pdf MITSUBISHI ELECTRIC Co. Press Release http://www.mitsubishielectric.com/news/2016/pdf/0303-b.pdf

Recent demonstration by Kyushu EPCo.

Demonstration at Buzen Battery Substation

Features of the battery system

1. The facility offers energy-storage capabilities similar to those of pumped hydro facilities while helping to improve the balance of supply and demand when renewable energy sources are used.

2. The energy storage system achieves effective overall control and improved operational efficiency through the use of battery systems to monitor and control modules in a multiple module system.

3. Containerized, compact (double stacked) battery modules help to reduce the facility footprint, installation time and construction costs.

(Summary) Recent demonstrations in Japan

Company	Project	Battery(Output,Capacity)	Note (Targets of the project, etc)		
Hokkaido	Minami-Hayakita	Redox flow (15 MW,60 MWh)	Renewables (demand/supply balancing)		
Tohoku	Minami-Soma	Lithium-ion (40 MW,40 MWh)	Renewables (demand/supply balancing)		
	Nishi-Sendai	Lithium-ion (40 MW,20 MWh)	Renewables (frequency control)		
Tokyo	Yokohama Smart City	Lithium-ion (300 kW,100 kWh)	Renewables (frequency control, spinning reserve)		
	Virtual Power Plant (VPP)	Unconfirmed (10 kWhx18)	Demand/supply balancing (normal times) Emergency power supply (disaster times)		
Chubu	Simose	Lithium-ion (25 kWh)	Renewables (voltage control)		
Hokuriku	Shika	Lithium-ion (50 kWhx2)	Renewables (overall performance test)		
Kansai	Amagasaki	Lithium-ion (100 kW,300 kWh)	Overall performance test		
Chugoku	Oki Islands	Lithium-ion (2 MW,0.7 MWh) Sodium-Sulfur (4.2 MW,25.2 MWh)	Renewables (demand/supply balancing), Island		
Kyushu	Buzen	Sodium-Sulfur (50 MW,300 MWh)	Demand/supply balancing		
	Isolated islands*	Lithium-ion (2~4 MW, 774 k~1.6 MWh)	*4 islands; Iki-shima, Tsu-shima, Tanega-shima, and Amami-ooshima		
Okinawa	Miyakojima Islands	Lithium-ion + Sodium-Sulfur (100 kW,176 kWhx2)	Renewables (demand/supply balancing), islands		

Source: Japanese electric power companies' web sites

Recent installation examples in the Americas & Europe

Source: Power Distribution Utilities Retail web site AES Energy Storage web site

Recent installation example in Chile.

Generation Alternative

Energy storage supplying critical spinning reserves.

Initial 2009 project leading to over 100MW of energy storage in Chile.

PURPOSES

- Primary & secondary reserves
- Contingency management

IMPACT

- Avoided load shedding and contingency curtailment
- ✓ Increased energy production and reduced costs
- Increased system security
- Inertia-like performance

2 MW Los Andes Atacama, Chile In operation (2009)

Generation Alternative

Energy storage frequency regulation from a wind farm since 2011

Serving US PJM Interconnection; integrated with eight power systems

Generation Alternative

Meeting critical local power capacity with world's largest battery

Two San Diego arrays of 37.5MW/150MWh installed in six months.

Contains Forward Looking Statements | Confidential & Proprietary

PURPOSES

- Capacity, local reliability
- Peak power mitigation
- Ramping/flexibility
- Ancillary services

IMPACT

- ✓ Rapid deployment
- ✓ Competitive & cost effective
- Meets flexibility (duck curve)

30MW Escondido Advancion Array San Diego, California

✓ Battery storage devices were installed in the city that can not be installed with conventional thermal power generation facilities.

✓ Early operation was possible without strict environmental regulations being applied.

Transmission Alternative

Frequency control and capacity using 1 hour battery

20MW array is the first of its kind in the Midwestern US.

PURPOSES

- Frequency response
- Capacity
- Voltage control

IMPACT

- Meet control/reliability regulations
- ✓ Reduce cost of capacity
- ✓ Potential black start

20 MW Harding Street Array Indianapolis, IN

Distribution Alternative

Embedding storage in the distribution network for reliability

Two Arizona arrays totaling 4MW/4MWh installed at substations for solar integration

PURPOSES

- Peak demand management
- Renewable integration
- ✓ Support rooftop solar growth
- Manage local feeder reliability
- ✓ Alternative to substation upgrades

2MW Buckeye Advancion Array Buckeye, Arizona

Contains Forward Looking Statements | Confidential & Proprietary

Renewable Integration

Solving peaking demand through solar + storage on Hawaii

28MW PV with 20MW, 5 hour duration energy storage to take full advantage of renewable power

BRIEF

Hawaii co-op signs deal for solar+storage project at 11¢/kWh

Contains Forward Looking Statements | Confidential & Proprietary

 \checkmark The state of Hawaii aims to make the ratio of renewable energy to the total power generation to 100% in the future.

✓ To compensate for the variability of renewable energy, the power storage system is necessary to achieve the target.

(Summary) Recent installation examples in the Americas & Europe

Country	City (State)	Battery (Output, Capacity)	Note (Targets of the project, etc)				
Chile	Los Andes (Atacama)	Lithium-ion (12 MW)	Primary & secondary reserves Independent grid				
	Laurel Mountain (WV)	Lithium-ion (32 MW)	Renewables (frequency regulation)				
	San Diego (CA)	Lithium-ion (37.5 MW,150 MWh)	Renewables (capacity, local reliability) Installed in 6 months				
	Buckeye (CA)	Lithium-ion (4 MW,4 MWh)	Renewables (peak demand management)				
	Long Beach (CA)	Lithium-ion (100 MW,400 MWh)	Renewables				
	Pomona (CA)	Lithium-ion (20 MW,80 MWh)	Construction of the system in less than 4 months				
United States	Mira Loma (CA)	Lithium-ion (20 MW,80 MWh)					
	Notrees (TX)	Lithium-ion (36 MW,24 MWh)	Renewables				
	Grand Ridge, LaSalle (IL)	Unconfirmed (68 MW)	Renewables				
	Indianapolis (IN)	Lithium-ion (20 MW,100 MWh)	Renewables (grid and transmission reliability) Built in under 12 months from ground- breaking to commissioning.				
	Hawaii	Lithium-ion (20 MW,100 MWh)	Renewables (peak demand management)				
United Kingdom	West Burton (Nottinghamshire)	Unconfirmed (49 MW)	Renewables (frequency regulation)				
	Barrow-in-Furness (Cumbria)	Lithium-ion (49 MW)	Capacity				
Source: Power Distribution Utilities Retail web site							

AES Energy Storage web site

Conclusion

Recent demonstrations of grid batteries in Japan

- The projects in Japan are mainly implemented in collaboration with the central or local governments.
- Usually, multiple goals are set for each project.
- There are some other projects that municipalities, companies and other entities have implemented.

Recent installation examples in the Americas & Europe

- In the U.S., there are several examples of installing batteries in real systems.
- Usually, the limited goal is set for each installation.
- Especially in urban areas, it is difficult to start operating conventional power plants in a short period of time. Therefore applying storage battery systems has a great advantage in this respect.

List of batteries

Battery type	Lead-acid	Nickel- metal Hydride	Lithium- ion	Sodium- Sulfur	Redox-flow	Molten-salt
Compact (Energy Density : Wh/kg)	X 35	△ 60	© 200) 130	× 10	© 290
Cost (JPY/kWh)	50,000	100,000	200,000	40,000	Evaluating	Evaluating
Capacity Enlargement	O - MW Class	O - MW Class	O - MW Class	© Over MW Class	© Over MW Class	Evaluating
Measurement Accuracy of State of Charge	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup	Ø	\bigtriangleup
Safety	0	0	\bigtriangleup	\bigtriangleup	Ø	O
Material Resource	\bigcirc	\bigtriangleup	\bigcirc	Ø	\bigtriangleup	O
Heat-up during Operation	Not Need	Not Need	Not Need	Need (> 300°C)	Not Need	Need (> 50℃)
Life time (Charge-discharge Cycle)	17 Yrs. 3,150 Cyc.	5 - 7 Yrs. 2,000 Cyc.	6 - 10 Yrs. 3,500 Cyc.	15 Yrs. 4,500 Cyc.	6 - 10 Yrs. Non-limit	Evaluating

Source : METI(2012)