

Utility Scale Energy Storage Application and Development in Korea

Sungmin Cho

KEPCO Research Institute Energy New Business Laboratory

Contents

- ESS Phase in KEPCO
- I Jocheon ESS on Jeju Island
- III Freq. Regulation ESS
- **IV** FR ESS Application
- V FR ESS Response
- **VI** Flexible ESS
- **VII** Conclusion

I. ESS Development Phase in KEPCO

17th GM & Canada Forum

II. Jocheon ESS on Jeju Island

II. Jocheon ESS on Jeju Island

- Energy Storage System
 - Rated Power : 4MW (1MW PCS X 4)
 - Rated Energy : 8MWh (1MWh battery in 40ft Container X 8)
 - Control : Single PMS (Power Management System)
 - 23kV Grid interconnection

Test item (PCS)

- Efficiency (Average 95.5%)
- Harmonics (Under 5% THD)
- Power Factor
- Response time (about 16ms)
- Protection

17th GM & Canada Forum

1MW ES-PCS Panel

II. Jocheon ESS on Jeju Island

- Test item (Battery System)
 - Cell balance, Efficiency, etc.

II. Jocheon ESS on Jeju Island

- ESS application demonstration
 - Peak shaving : peak demand 27.4MW → 26.4MW
 - Frequency regulation
 - Wind smoothing : Maximum Power fluctuation (8 \rightarrow 1.1 %/min)

III. ESS for Frequency regulation

Since 2015, ESS (Energy Storage System) for GF (Governor Free) is installed up to 236MW in KEPCO

FR ESS	Operational			Planned	Total
	2015	2016	2017	2018	TOLAI
Rating(MW)	52	184	140*	124	500
No. of Facilities	2	7	4*	4	17

17th GM & Canada Forum

III. ESS for Frequency regulation

Shin-Hwasun ESS Facility (24 MW)

III. ESS for Frequency regulation

Configuration of 24MW FR ESS(example)

17th GM & Canada Forum

IV. FR ESS Application

- Major objectives is Primary Frequency Control to maximize fast response benefit.
 - We defined two ESS operation modes
 - 1. Steady state control mode
 - 2. Transient state control mode

17th GM & Canada Forum

[SAND2013-5131 : DOE EPRI ESS Handbook]

IV. FR ESS Application

- FR Algorithm for steady state
 - Over deadband $(\pm 0.03 \text{Hz})$: droop control with speed regulation

17th GM & Canada Forum

• Within deadband : recovery control of battery SOC

IV. FR ESS Application

- FR Algorithm for transient state
 - Operation mode (steady state → transient state)
 - Condition
 - ➤ under 59.97 Hz and
 - ➤ ROCOF lesser than 0.028 Hz/sec during 1000 msec.
 - Operation
 - > Power : Δ Hz × K(sys. freq. char. Constants, 787 MW/0.1Hz)

17th GM & Canada Forum

- Exit mode (transient state → steady state)
 - Condition
 - Positive freq. ramp above 59.9 Hz still after 1 sec
 - Operation
 - Speed regulation : 0.16% (Droop control)
 - ➢ Until recovering 60 Hz or 6 min after starting exit mode

V. FR ESS Response

- Response to Hanul NP #1(950MW) trip ('16.1.19 11:39:48)
 - Seo-Anseong ESS #1(16MW)

■ Transient exit mode : triggered within 200msec.

V. FR ESS Response

Issue and future study (Freq. pick-up system)

> Different ESS response owing to different freq. signal conditioning system

- Multi-Purpose ESS development
 - > Optimal operational strategy for technical and economical solution
 - > Supply & demand issue (renewables, peak), power system (FR)
- 28 MW ESS for renewable energy integration
 - > To be integrated with 60 MW off-shore wind farm

- 28 MW ESS configuration
 - We defined three ESS Group by Power Energy ratio
 - ESS group is controlled by LPMS (Local Power Management System)

LPMS application mode

- ▶ LPMS have an adjustable control time step from 20ms to 1hour
- Operation mode can be changed by user or TEMS
- Flexible ESS can perform the following functions

TEMS control block

- KEPCO demonstrated Energy Storage System (2011~)
 - Peak shaving, FR, Wind Smoothing by Jocheon 4 MW / 8 MWh in Jeju
 - Flexible ESS for multi function and fleet control (2014~2018)
- KEPCO has got a lot of know-how about operation and installation from about 400MW ESS.
 - Siting, PCS and BMS performance test, communication design, etc.
 - PCS and Battery performance also improved.
- KEPCO will further develop various technologies to expand the use of ESS.
 - Multi Modular ESS, Smart Inverter, Etc.

Thanks

Sungmin Cho Sungmin.cho@kepco.co.kr