

# Microgrid Technology Implementation and Standardization

Wenpeng Luan

**China Electric Power Research Institute** 

May 18, 2017

IERE 2017, Vancouver, Canada





#### Agenda

- 1. Microgrid and background information
- 2. Energy storage applications and examples
- 3. Standardization efforts



# **Distributed Generation (DG)**



- At or near the customer site
- > Operation mode
  - Generation mainly for self use
  - Surplus can be sold to the grid
- > Solar, wind, biomass, geo-thermal, hydro, gas and
- comprehensive use of multi-types energy
- > Challenge: uncertain, partially unpredictable











### **Controllable DG Integration**



*Technical solution:* consider the DG and local load as a small system (i.e. microgrid)



- Distributed integration
- Independent individual uncontrollable power source
- Multiple connection points with local grid

- Group integration
- Controllable load/power source
- Single connection point with local grid

中国电力科学研究院 CHINA ELECTRIC POWER RESEARCH INSTITUTE

## **Microgrid Solution**





中国

田

**ELECTRIC POWER RESEARCH INSTITUTE** 

**Major Microgrid Application Scenarios** 



- Facilitate the DER integration in high penetration
- Provide power supply to remote area with weak/or no link to the main grid
- Meet customer's higher requirement on power quality and reliability



#### **Characteristics**



- Mainly rely on distributed energy resource with small capacity and low inertia, intermittent and uncontrollable output
- Close to customer, with local utilization of power/heat energy
- Dynamic load control
- High utilization of power electronic devices, such as inverter
- Capable of independent and stable off-grid operation
- Multiple operation modes: connected/islanded











#### **Enhance the integration of intermittent DG**

- Requirement: Smooth DG power fluctuations, balance the generation and load inside microgrid
- Storage type: battery
- Technical requirement
  - Fast response
  - Sufficient storage capacity to meet
    the requirement of smoothing fluctuation
- Technical parameters:
  - Dynamic response time: 20ms~few seconds
  - Storage capacity: matching to generation capacity, usually from dozens of kW to several MW

#### Case: PV/Storage Microgrid in Henan

- Power: PV 380kW
- Storage: 2 ×100kW/100kWh Lithium

#### battery







#### Increase the operation stability of islanded microgrid

- Functional requirements: provide power support to increase the stability of power inside microgrid
- Technical requirement
  - Fast response:

Dynamic response time: < 20 ms

Sufficient storage capacity matching load capacity, dozens of kW to se Case: Islanded Microgrid with wind/PV/storage in Dongfushan

- Power: 210kW wind turbine, 100kWp PV and 200kW diesel generator
- Storage: 2000Ah battery



**CHINA ELECTRIC POWER RESEARCH INSTITUTE** 



#### Improve the power quality of microgrid

- **Requirements:** provide fast power buffer to resolve the momentary outage, voltage dip and fluctuation, etc.
- Storage: super-capacitor, flywheel, superconducting magnetic energy storage
- Technical requirements
  - Faster response
  - Longer cycle life
- Technical parameters:
  - Dynamic response time: <20ms</p>
  - Recycling times: > 50,000 times

**Case:** Palmdale Microgrid in U.S.

- Power: Wind turbine 950kW, gas generator
  200kW, hydro-power 250kW, diesel generator
  800kW
- Storage: Super capacitor 450kW



**CHINA ELECTRIC POWER RESEARCH INSTITUTE** 



#### Improve energy efficiency

- Requirements: peak shaving
- Storage type: battery
- Technical requirements:
  - Larger storage capacity
  - Longer cycle life
- Technical parameters:
  - Storage capacity: usually dozenskW to several MW
  - Cycle life: > 5,000 times

#### **Case:** Kyotango Microgrid in Japan

- Power: gas generation 400kW, fuel cell 250kW, wind turbine 50kW
- Storage: 100kW lead-acid battery





### **Microgrid Implementation in China**



#### The typical microgrid projects in China

| No. | Projects                                                                              |
|-----|---------------------------------------------------------------------------------------|
| 1   | PV and Storage pilot projects in Henan                                                |
| 2   | CCHP Microgrid system in Feshan, Guangdong                                            |
| 3   | Wind/PV/Diesel/Storage Microgrid in Dongao Island in Guangdong                        |
| 4   | Smart business hall Microgrid projects<br>in Sino-Singapore eco-city                  |
| 5   | Wind/PV/Diesel/Storage and Desalination project in Dongfu Island, Zhejiang            |
| 6   | Immigrant village Microgrid in Inner Mongolia                                         |
| 7   | Langfang Eco-city Microgrid project                                                   |
| 8   | Zuoan Microgrid pilot project in Beijing                                              |
| 9   | Wind/PV/Storage Microgrid project in Xian International Horticultural Exposition Park |
| 10  | PV and storage Microgrid project in Yangzhou development zone                         |
| 11  | Microgrid pilot project in Gongqing, Jiangxi                                          |
| 12  | PV and storage Microgrid in Xiamen Island in Fujian                                   |
| 13  | Wind/PV/Storage/Diesel and super capacitor island Microgrid in Nanlu, Zhejiang        |
| 14  | Wind/PV/Storage/Diesel and super capacitor Microgrid in Luxi island in Zhejiang       |
| 15  | Wind/PV/Storage village Microgrid projects in Chengde                                 |



#### **Microgrids in China**



#### Characteristics of the typical microgrid projects

**1** Power source: mainly wind power and PV

② Voltage:

380V: 11 projects (71%)

10kV: 4 projects (29%)

**③ Installed capacity:** 

11<=1MW, 4 <=5MW

- (4) Energy storage: 14 deployed ESS
- **5 Operation mode:** integrated operation, islanded operation



### **Implementation Example in China**



- Microgrid project in east Inner Mongolia
- Voltage level: 380V
- Capacity: PV 110kW ;
  Wind power 50kW;
  lithium battery
  42kW/50kWh
- To provide power supply for 100 households farmers and diary farm



中国电刀科字研究阮 CHINA ELECTRIC POWER RESEARCH INSTITUTE

# **Implementation Example in China**



#### System Overview-Microgrid project in east Inner Mongolia



#### **Microgrid Standardization**



Key technology areas for Microgrid standardization

- Optimal planning and design
- Coordinated operation and control of multiple DERs
- Hybrid energy storage
- Power quality control and improvement
- Smart protection
- Economic operation and optimized energy management



### **Standardization Efforts in China**



#### • Establishment of National microgrid and DER integration TC

Responsible for developing microgrid and DER integration standards system and yearly development plan; developing related standards and standards promotion; participating international standardization activities on behalf of SAC

• Publish of microgrid and DER integration standards system

Covering planning and design, commissioning, integration test, operation and control, etc.

 Development of 8 national standards, 6 industry standards, and 3 SGCC standards



### **Standardization Efforts in China**



#### Microgrid standards under development in China

| No. | Туре     | Standard                                                                               |
|-----|----------|----------------------------------------------------------------------------------------|
| 1   | National | Integration of microgrid to power system TS                                            |
| 2   | National | Design specification of integrated microgrid                                           |
| 3   | National | Commissioning specification of integrated microgrid                                    |
| 4   | National | Test of integrated microgrid TS                                                        |
| 5   | National | Operation and control specification of microgrid<br>integrated to distribution network |
| 6   | National | Monitoring system of microgrid TS                                                      |
| 7   | National | EMS of microgrid TS                                                                    |
| 8   | National | Project design specification of microgrid                                              |



### **Standardization Efforts in China**



#### Microgrid standards under development in China

| No. | Туре     | Standard                                                                |
|-----|----------|-------------------------------------------------------------------------|
| 9   | Industry | Experimental standard for integrating microgrid to<br>power system      |
| 10  | Industry | Function of microgrid control and operation system specification        |
| 11  | Industry | Operation specification of islanded microgrid                           |
| 12  | Industry | Monitoring of islanded microgrid TS                                     |
| 13  | Industry | Guide for microgrid planning and design                                 |
| 14  | Industry | Microgrid operation and control TS                                      |
| 15  | SGCC     | Microgrid integration to distribution network TS                        |
| 16  | SGCC     | Common microgrid configuring TS                                         |
| 17  | SGCC     | Test specification for integrating microgrid to distribution<br>network |



#### **International Standardization Efforts**



- IEC has established Ad Hoc Group 53 Microgrid and IEC SEG6
  Nonconventional Distribution Grid/Microgrid to develop the strategic plan in the microgrid area
- IEC has published *Microgrid for Disaster Preparedness and Recovery*
- IEC is going to set up SC8B "Decentralized Electrical Energy Systems" in TC8
- IEC standards under development
- IEC/TS 62898-1 Guidelines for the General Planning and Design of the Microgrid
- IEC/TS 62898-2 Technical requirements for Operation and Control of Microgrid
- IEC/TS 62898-3-1: Microgrids Technical Requirements Protection requirements in microgrids





# Any question?

Wenpeng Luan

China Electric Power Research Institute

luanwenpeng@epri.sgcc.com.cn

