

innogy

"greenfuel" project

17th IERE General Meeting & Canada Forum

17th May 2017 Thorsten Miltkau

The following slides provide ...

... information about:

- German CO2 emission targets
- Methanol as green energy carrier
- The R&D project "greenfuel"

Germany mainly uses three levers to reduce CO₂ emissions

But, will these levers be sufficient to reach the target?

German CO2 targets are only achievable with a green energy carrier

CO₂ emission reduction target of 95% is not achievable using only direct electrification

 CO_2 emissions from long distance travel are hardly evitable by means of direct electrification. Even if all other emissions could be completely avoided, Germany would still emit to much CO_2 due to inevitable emissions (according to UBA).

Numbers in Mio. t CO₂-equivalent p.a.

Greenfuels enable a worldwide trading of renewable energy

Advantages of a global greenfuel exchange

- Low cost of production
- Higher efficiency of existing resources
- Less "not in my backyard" challenges
- Global portfolio-effects can hedge local fluctuations
- Development potential for exporting countries "win / win"

Easy handling and transport are basic requirements to take these advantages. Here **liquid energy carrier** are in **advantage** over gaseous.

There are several alternatives for green, i.e. CO2 neutral, energy carriers available

Non-exhaustive overview of potential energy carriers

Hydrogen (H₂)

Methane (CH₄)

Methanol (CH₃OH)

Ammonia (NH₃)

Metallic aluminium

Other ...

Methanol as a green fuel ...

... shows very good properties for use ...

Easy handling

- > Methanol is liquid at ambient conditions
- > Handling is similar to diesel, gasoline or fuel oil
- > Methanol is blendable to conventional fuels

High energy density

In comparison to the often discussed energy carrier hydrogen, methanol offers a high volumetric energy density

... and can reduce the CO₂ emissions from industry

- Methanol is an important base chemical for the production of colours, solvents and plastics
- > The global demand for methanol reaches 65 Mio. t, thereof approx. 7 Mio. t in Germany
- > The chemical sectors uses 100.000 t of methanol per day

The use of green methanol is **not limited** to the **industry sector**. New use cases can evolve in **private households** and the **mobility sector**.

The conversion route of green methanol combines many technologies and serves sector coupling

¹ eventually combined into one unit | ² safe shutdown purpose; eventually combined into one unit

The R&D project "greenfuel" – a short video

The R&D project "greenfuel" demonstrates the entire value chain of green methanol

Production of methanol

Technical specifications

- Biocatalytical process
- Input: power, water, CO₂ from air
- 3 stage conversion from water to CO₂ to Methanol
- TRL 4-5
- Size of plant: 2x2x1 m
- Technology partner: Gensoric GmbH (Ger), Skytree (NL)

Challenges:

- Upscaling from existing Labscale
- Production and usage of active enough enzymes
- Development of enzymes (activity, costs)

MS innogy: first Methanol-fuel cell ship at lake Baldeney in Germany

innogy SE · Thorsten Miltkau · 17th May 2017

Nissan eNV 200 – Rebuild for fuel cell REX*)

Technical specifications Rebuild 7 seats 80 kW engine 80kW engine + 5kW MeOH FC 24 kWh battery 24 kWh battery > 500km (urban) > 50 ltr Tank zero particle emission

current	green scenario
132 g/km	100 g/km
176 g/km	123 g/km
142 g/km	80 g/km
98 g/km	2 g/km
17 8g/km	3 g/km
83 g/km	2 g/km
	132 g/km 176 g/km 142 g/km 98 g/km 17 8g/km

REX: range extender // Source for table content: Danish department of Energy 2014

The timeline

Impressions – transportation of ship to shipyard

innogy SE · Thorsten Miltkau · 17th May 2017

"...by implementing the whole value chain of methanol within this R&D project we expect to generate not only a valuable contribution for the city of Essen and the "Grüne Hauptstadt Europas 2017" but also to gain a lot of know how for building a very promising business case for innogy...."

Jens Kanacher, Head of CoC Energy Systems and Storage

Thank you very much for your attention!