2017 The 17th IERE General meeting and Canada Forum

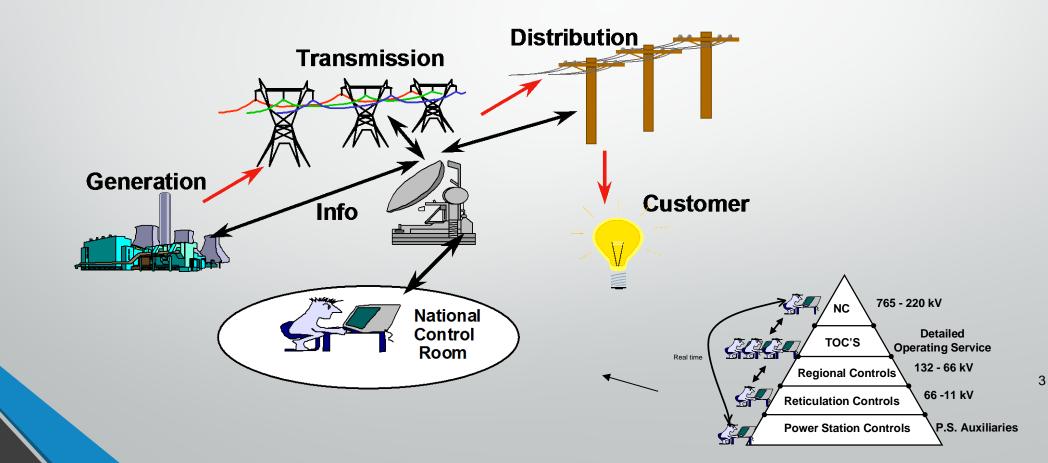
Application of Cost-Effective Grid-Scale Battery Storage as an Enabler of Network Integration of Renewable Energy

by

Inno Davidson, PhD, FIET, FSAIEE

Professor of Electrical Engineering

Durban University of Technology, Durban


South Africa

Outline of Presentation

- Introduction
- Energy storage technologies
- Battery storage system
- Deployment of grid-scale battery storage devices
- Closing Remarks

1.0 Introduction – Electric Power System

- Generation, transmission and distribution of electricity
- Generation Demand + Network losses
- System Requirements: Voltage ± 6% ; Frequency ± 1%

Some Challenges in the Electricity Industry

- Electricity Production = Consumption + Network Losses (Instantaneously)
- Fossil-fuels and uranium are depletable sources
- Electricity production from conventional sources involves environmental pollution
- Intermittency in renewable sources (wind, solar-PV)
- Economic challenges (affordable electricity prices)
- Environmental challenges (reduction in GHG emissions)
- Regulatory challenges (government mandate on renewable energy)
- Changing public perception energy sustainability

Opportunities in the Electricity Industry

Renewable energy (RE):

- RE (such as wind, solar) are non-depletable
- RE can enable energy resource sustainability
- RE can reduce GHG emissions and global warming
- Wind energy tends to be highest at night when load demand is often lowest.
- Large-scale solar is ineffective at night when there is no sunlight

Opportunities in the Electricity Industry

Energy storage (ES):

- ES will enhance the use of RE and assist achieve emission targets
- Enable bulk storage of electrical energy for future dispatch
- Bulk storage can enable curtailment of intermittency
- Unlock a new market in RE with increased penetration in T&D networks
- Catalyze the rapid uptake of rooftop solar PV installations in households
- Demand-side management

Opportunities in the Electricity Industry

Energy storage:

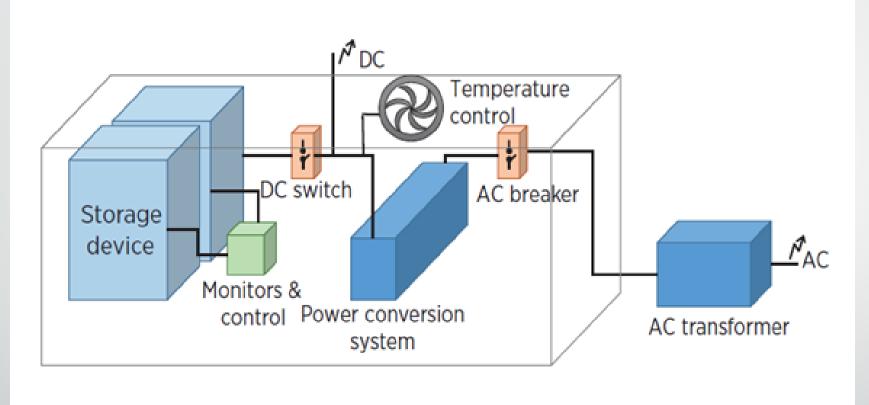
- Energy storage devises can be used supplement smart grid applications where PV, wind, biomass are integrated.
- Used to defer capital investment for augmentation
- Off-grid and isolated grid applications in islands or rural areas
- Provide peaking power and reduce the need for fossil-fuel peaking plant (gas turbines)
- Improvements in power quality and voltage stability and frequency regulation.

"There is a need for extensive practical experience in the implementation and monitoring of grid-scale energy storage devises in electric power grids worldwide."

2.0 Energy Storage Technologies

Classification:

- Mechanical storage
 - Potential energy pumped hydro storage, compressed air
 - Kinetic energy flywheels
- Chemical storage hydrogen energy, thermo-chemical energy (solar cells, fuel cells)
- Electromagnetic energy storage
 - Electrical capacitors and super-capacitors
 - Magnetic superconducting magnetic energy storage (SMES)
- Thermal energy storage cold and heat storage
- Electrochemical energy storage batteries, flow batteries


Energy Storage Devices (ESD)

Some key questions and requirements:

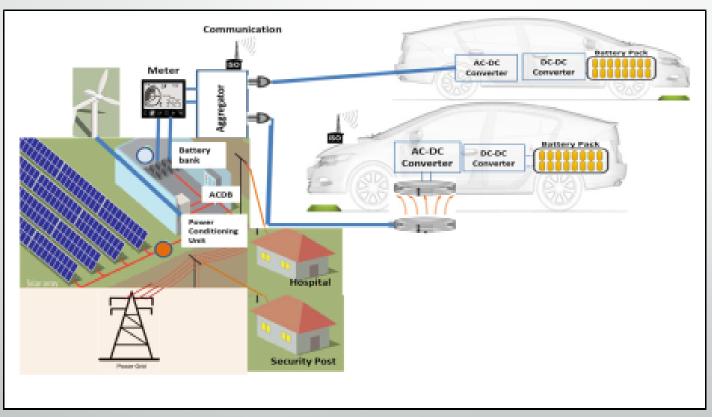
- Demonstrate that ESD increase value and provide grid support when required?
- Show that ESD can meet grid standards in terms of safety, quality and reliability.
- For a commercial perspective in deploying ESDs, what are the key drivers, applications and challenges?
- How will the regulatory framework be established? Who can own, operate, and maintain ESDs and define tariff structures?

"The introduction and application of cost-effective grid-scale battery storage will be a gamechanger for the distribution and control of electric power."

3.0 Battery Storage System

<u>**Components</u>**: power conversion systems (bi-directional invertors), monitoring and control systems (charge controller, optimize performance) and battery unit.</u>

"Grid-scale battery storage – greater flexibility, control and utilization of electrical power"

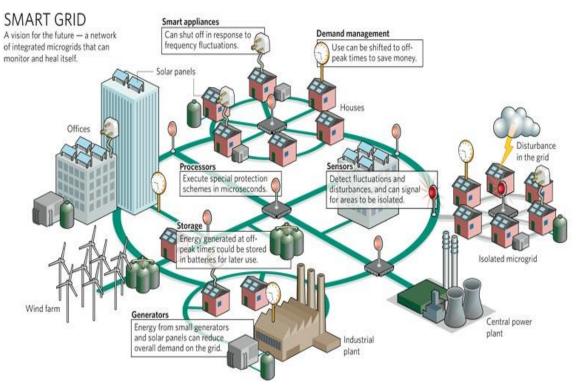

Battery Storage System – Drivers and Applications

Some key drivers and applications of grid-scale battery storage systems:

- Increased RE usage
- Increasing network costs and poor utilization of assets
- Increasing need for reliable backup power
- Peaking power
- Demand side management
- Tariff changes
- Arbitrage

Contd./

- Power quality
- Off-grid or isolated grid applications
- Increased use of Electric vehicles (EVs)



Contd./

Smart Cities – Intelligent Systems

- SMART Grids Grid integration of RE using smart technologies/innovation for smart cities
- Smart Infrastructure, Smart Transportation Systems
- Smart Business Enterprises and Entrepreneurship
- Smart Buildings, Smart Health Care, Smart Water
- Smart Education and Smart Technologies

4.0 Deployment of Grid-scale Battery Storage Devices Some key challenges:

- High initial investment cost for battery storage system
- Safety concerns for batteries being used in large-scale
- Non-standardization
- Grid interconnection barriers and excess capacity
- Recycling and environmental issues
- Temperature of batteries in storage and weather extremes
- Lack of clear business case and value proposition low oil and gas prices and commodity cycles.
- Inadequate policies or incentives to promote wide-scale use.

Closing Remarks

Grid-scale Energy Storage Systems:

- Enabler of the re-invention and modernization of the electric power grid
- Enable renewables and electric vehicles interact with the bulk electric systems
- Enable distributed energy sources (microgrids, demand response)
- Improve grid reliability
- Provide capital deferral in new investment

Thank you