Energy Storage to Mitigate the Impacts of Intermittent Renewables

The 17th IERE General Meeting & Canada Forum

May 17, 2017

Tokyo Institute of Technology Nanahara, Toshiya nanahara@ee.e.titech.ac.jp

Background: Renewables and ESS

 Significant increase of PV and wind power (Renewable Energy Sources: RES) causes various concerns in a power system including those in supply-and-demand balance of a power system.

Energy storage systems (ESS) can offer a

promising option to mitigate the concerns.

 However, elaborate studies are required to make it an efficient and economic option.

[Capacity of RES in Japan]

Energy Storage Systems: Many Choices

[Objectives]

- Absorbing surplus power,
- Compensating fluctuations of intermittent RES,
- Supporting decrease of system inertia, etc.

[Locations]

Customers including EV, etc.

[Types]

Battery (Li-ion, Na-S, Redox-flow, Lead-acid, Ni-H etc.), Flywheel, Capacitor, Pumped storage, CAES, Hydrogen, etc.

Sample Large-Scale ESS in Japan

(1) Li-ion Battery in a Power System

Nishi-Sendai SS Minami-Soma SS transforme About 6,000m² About 8,500m² Storage battery Area (100m×60m) (100m×85m) Start of Monitoring 8 Feb. 2015 Feb. 2016 control house operation Battery **Lithium-ion Battery Lithium-ion Battery** Interconnection Type equipment Toshiba Manufacturer **Toshiba** Capacity: 20,000kW Capacity: 40,000kW System (short-time 40,000 kW) Energy: 40,000kWh Performance Energy: 20,000kWh Miyagi Improvement of demand-Compensate frequency Purpose fluctuation and supply balance Improvement of Nishi-Sendai SS **Expansion of the** Expectation frequency effect acceptable capacity stabilization **Fukushima** ·Improvement of demand-and ·Load frequency control supply balance Verification Voltage fluctuation control with storage battery Minami-Soma SS with reactive power control

Tohoku Electric Power

(4) Redox Flow Battery in a Power System

Rating of the Redox-Flow Battery: 15MW, 60MWh

[Photo, Figure] By the courtesy of Hokkaido Electric Power Co.

Challenges for BESS with Renewables

The response of BESS is enough fast. However, the following challenges could be vital for BESS in addition to cost reduction, life extension and safety:

- Large capacity, in particular to compensate longterm fluctuations
- Minimum size → Management of SOC
- Long stand-by time

 Low auxiliary power
- Temperature management of battery cells
- Long duration of operation with low SOC
 - Less burden for operation and maintenance

donkey ears!

Concluding Remark

The ESS discussed here has enough fast response to mitigate various challenges caused by large-scale penetration of intermittent renewables. However, there remains room for further research:

The king has

- What is the objective to install ESS?
- How to optimize ESS in accordance with the objective? The design of ESS is governed by the objective.
- How to operate ESS to maximize its efficiency as well as its expected life?

Thank you very much for your attention.

Dimensioning of BESS

The ratio of kWh capacity to kW capacity of Battery Energy Storage System (BESS) tends to be:

- Large for compensating long-term fluctuations

 approximately proportional to the time constant in case of a wash-out filter;
- Large in case of absorbing surplus power,
- Small for an insular system, etc.

Whereas small ratio has an eminent advantage from the economical points of view, larger ratio is preferable to facilitate the operation of BESS.

(1) Redox Flow Battery in a Wind Farm

A control method for battery energy storage system was developed. Smoothing up to some ten minutes was pursued.

Outline of a Hybrid System

Low-Freq. Comp. of Wind Farm Output

[Source] NEDO: Wind Power Stabilization Technology Development Project

among wind farms.

(2) Flywheel in an Insular System

2.2 電力貯蔵 (離島系統のFW)

(2) Flywheel in an Insular System

1. 事業概要

Tokyo Institute of Technology

設置場所	北海道電力 南早来変電所 (北海道勇払郡安平町)	
実証設備	レドックスフロー電池 定格出力:15,000kW 蓄電容量:60,000kWh	
実証期間	2013年度〜2018年度 (2015年12月25日に設備の運用を開始。2018年度まで実証試験を実施)	
実証目的	再生可能エネルギーの出力変動に対する調整力としての性能実証および 最適な制御技術の開発。	

2. 設備の外観

● 1 階に電解液タンク、電力変換装置、2階にセルスタック、熱交換器を設置。 (設置面積:約5,000m²)

3. レドックスフロー電池の概要

- ●レドックスフロー電池は、正負極の電解液にバナジウムイオン水溶液を用いた 電解液環流型の電力貯蔵用蓄電池です。
- ●下図に示すように電池反応を行うセルスタック、電解液を貯蔵する正負極のタンク、さらに電解液をタンクからセルへと循環するためのポンプ、配管等から構成されています。
- ■電池設置後に、各種性能(容量、効率、保守性等)の評価を行います。

4. レドックスフロー電池システムの構成

●電池盤2面(1面あたりセルスタック4台内蔵)、熱交換器盤2面、電解液タンク2基、ポンプ2台、および配管により、電池の最小単位(モジュール)を構成します。

●5組のモジュールと交直変換装置(PCS)により、出力制御の最小単位(バンク)を構成し、電池システムは13バンク(65モジュール)から構成しま

Comparison of Battery System

	Nishi-Sendai SS	Minami-Soma SS
Area	About 6,000m ² (100m×60m)	About 8,500m ² (100m×85m)
Start of operation	Feb. 2015	Feb. 2016
Battery Type	Lithium-ion Battery	Lithium-ion Battery
Manufacturer	Toshiba	Toshiba
System Performance	Capacity: 20,000kW (short-time 40,000 kW)	Capacity: 40,000kW Energy: 40,000kWh
	Energy: 20,000kWh	
Purpose	Compensate frequency fluctuation	Improvement of demand- and supply balance
	Compensate frequency	•

Nishi-Sendai SS Outline of Storage battery system (2)

Facilities picture

[outside]

Storage battery container x80

[inside]

- Main controller(MC)
- •PCS x80 unit
- Step-up transformer x20 unit

Nishi-Sendai SS Outline of Storage battery system (5) Image of control

Outline of Nishi-Sendai Project (4)

example of charge / discharge

Trend in Impacts of Wind Power

短周期変動への対応

• 負荷周波数制御領域より 長周期の変動の影響懸念

- •変動の平滑化効果見極め
- 新しい調整力の確保:蓄電池 等

PV出力の平滑化効果(例)

<u> 苫前WF設置のレドックスフロー電池</u> 「出典]NEDO:風力発電電力系統安定化等技術開発

東京工業大学 Tokyo Institute of Technology